【C语言】深度剖析数据在内存中的存储

一、数据类型详细介绍

1、数据类型介绍

(1)基本的内置类型
//内置类型就是C语言自带的类型char        //字符数据类型
short       //短整型
int         //整形
long        //长整型
long long   //更长的整形
float       //单精度浮点数
double      //双精度浮点数

:C语言中没有字符串类型。

(2)类型的意义
  • 使用这个类型开辟内存空间的大小(大小决定了使用范围)。
  • 如何看待内存空间的视角。

2、类型的基本归类 

(1)整型
charunsigned charsigned charshortunsigned short [int]signed short [int]intunsigned intsigned intlongunsigned long [int]signed long [int]
(2)浮点数
float
double
(3)构造类型
> 数组类型
> 结构体类型 struct
> 枚举类型 enum
> 联合类型 union
(4)指针类型
int* pi;
char* pc;
float* pf;
void* pv;
(5)空类型

void表示空类型(无类型)

通常应用于函数的返回类型、函数的参数、指针类型


二、整型在内存中的存储

⚪原码、反码、补码

计算机中的有符号数有三种表示方法,即原码、反码和补码

三种表示方法均有符号位和数值位两部分,符号位都是用 0 表示 “正”,用 1 表示 “负”,而数值位三种表示方法各不相同

⚪原码

直接将二进制按照正负数的形式翻译成二进制就可以。

⚪反码

将原码的符号位不变其他位依次按位取反就可以得到了。

⚪补码

反码 +1 就得到补码


 正数的原、反、补码都相同。


对于整形来说:数据存放内存中其实存放的是补码


为什么在计算机系统中,数值一律用补码来表示和存储呢?

原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

在内存中的存储: 

 

 

补码:1111 1111 1111 1111 1111 1111 1111 0110 (-10的补码)
f        f       f       f       f        f       f      6(-10的十六进制)
我们可以看到对于 a b 分别存储的是补码。但是我们发现顺序有点 不对劲,  这是为什么呢?

三、大小端介绍

1、什么是大小端

  • 大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中
  • 小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中

 


2、为什么会有大端和小端呢? 

        这是因为在计算机系统中,是以字节为单位的,每个地址单元都对应着一个字节,一个字节为 8 bit。但是在  语言中除了  8bit  的  char  之外,还有  16bit  的  short  型, 32bit  的  long  型(要看具体的编译器)。另外,对于位数大于 8  位的处理器,例如  16  位或者  32  位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如果将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
        例如一个 16bit 的 short x ,在内存中的地址为 0x0010 x 的值为 0x1122 ,那么 0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的 ARM DSP 都为小端模式。有些ARM 处理器还可以由硬件来选择是大端模式还是小端模式。

下面这段代码会输出什么呢? 

#include <stdio.h>int main()
{char a= -1;signed char b=-1;unsigned char c=-1;printf("a=%d,b=%d,c=%d",a,b,c);return 0;
}

 

帮助理解: 

:char 是 signed char 还是 unsigned char。C 语言并没有规定,取决于编译器(大多数编译器下是 signed char)。


四、浮点型在内存中的存储

1、常见的浮点数

3.14159 1E10 浮点数家族包括: float double long double 类型。
浮点数表示的范围: float.h 中定义。 ​​​​​​​​​​​

2、标准规定 

根据国际标准 IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式(了解即可):

  • (-1)^S * M * 2^E
  • (-1)^S 表示符号位当 S=0,V为正数;当 S=1,V为负数
  • M 表示有效数字大于等于1,小于2
  • 2^E 表示指数位
举例来说:
十进制的  5.0 ,写成二进制是 101.0 ,相当于 1.01×2^2 。 那么,按照上面 V 的格式,可以得出S =0 ,M=1.01, E=2
十进制的  -5.0 ,写成二进制是 - 101.0 ,相当于 - 1.01×2^2 。那么,S =1 M=1.01 E=2
IEEE 754 规定:
对于  32  位的浮点数, 最高的 1 位是符号位 S,接着的 8 位是指数 E,剩下的 23 位为有效数字M

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M

        IEEE 754对有效数字 M 和指数 E ,还有一些特别规定。 前面说过, 1≤M<2 ,也就是说, M 可以写成 1.xxxxxx 的形式,其中 xxxxxx  表示小数部分。
        IEEE 754规定,在计算机内部保存 M 时,默认这个数的第一位总是 1 ,因此可以被舍去,只保存后面的  xxxxxx  部分。比如保存 1.01  的时候,只保存  01 ,等到读取的时候,再把第一位的 1 加上去。这样做的目的,是节省 1 位有效数字。以32 位浮点数为例,留给 M 只有 23 位,将第一位的 1 舍去以后,等于可以保存 24 位有效数字。
至于指数 E ,情况就比较复杂。
        首先, E为一个无符号整数(unsigned int 这意味着,如果 E  为  8 位,它的取值范围为  0~255 ;如果  11 位,它的取值范围为 0~2047 。但是,科学计数法中的  是可以出现负数的,所以 IEEE 754  规定,存入内存时  的真实值必须再加上一个中间数,对于 8  位的  E ,这个中间数是 127 ;对于  11  位的  E ,这个中间数是  1023 。比如, 2^10  的  E 是 10 ,所以保存成  32  位浮点数时,必须保存成  10+127=137 ,即 10001001。

然后,指数E从内存中取出还可以再分成种情况:

⚪E 不全为 0 或不全为 1
这时,浮点数就采用下面的规则表示,即指数  的计算值减去  127 (或 1023 ),得到真实值,再将有效数字  前加上第一位的 1 。 比如: 0.5 1/2 )的二进制形式为  0.1 ,由于规定正数部分必须为  1 ,即将小数点右移  1 位,则为  1.0*2^(-1) ,其阶码为  -1+127=126 ,表示为 01111110 ,而尾数  1.0  去掉整数部分为  0 ,补齐  到  23 位 00000000000000000000000 ,则其二进制表示形式为
0 01111110 00000000000000000000000
⚪E全为0
这时,浮点数的指数 E 等于 1~127(或者 1~1023 )即为真实值,
有效数字 M 不再加上第一位的 1,而是还原为 0.xxxxxx 的小数。这样做是为了表示 ±0,以及接近于 0 的很小的数字。

⚪E全为1

这时,如果有效数字 M 全为 0,表示 ±无穷大(正负取决于符号位S);

浮点数存储的例子:

int main()
{int n = 9; //以整型的视角放入float *pFloat = (float *)&n;printf("n的值为:%d\n",n); //以整型的视角拿出printf("*pFloat的值为:%f\n",*pFloat); //以浮点型的视角拿出*pFloat = 9.0; //以浮点型的视角放入printf("num的值为:%d\n",n); //以整型的视角拿出printf("*pFloat的值为:%f\n",*pFloat); //以浮点型的视角拿出return 0;
}

 

 num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?

 分析如下:

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/94669.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

米尔瑞萨RZ/G2L开发板-02 ffmpeg的使用和RTMP直播

最近不知道是不是熬夜太多&#xff0c;然后记忆力减退了&#xff1f; 因为板子回来以后我就迫不及待的试了一下板子&#xff0c;然后发现板子有SSH&#xff0c;但是并没有ffmpeg&#xff0c;最近总是在玩&#xff0c;然后今天说是把板子还原一下哇&#xff0c;然后把官方的固件…

【Linux操作系统】深入探索Linux进程:创建、共享与管理

进程的创建是Linux系统编程中的重要概念之一。在本节中&#xff0c;我们将介绍进程的创建、获取进程ID和父进程ID、进程共享、exec函数族、wait和waitpid等相关内容。 文章目录 1. 进程的创建1.1 函数原型和返回值1.2 函数示例 2. 获取进程ID和父进程ID2.1 函数原型和返回值2.…

java练习4.快速查找

题目: 数组 arr[6,1,3,7,9,8,5,4,2],用快速排序进行升序排序. import java.util.Random;public class recursionDemo {public static void main(String[] args) {/*快速排序:* 第一轮:以0索引为基准数,确定基准数在数组正确的位置,* 比基准数小的放到左边,比基准数大的放在右边…

Markdown 入门基础

文章目录 Markdown 是什么&#xff1f;为什么要使用 Markdown?工欲善其事&#xff0c;必先利其器Markdown 的工作原理Markdown 有什么用&#xff1f;网站文件资料笔记书籍演示文稿邮件文档 Markdown 方言其它资源 Markdown 是什么&#xff1f; Markdown 是一种轻量级的标记语…

【c语言】通讯录(动态版+文件+背景音乐)含源码

开饭了&#xff0c;之前写的通讯录&#xff0c;是否会有人觉得申请1000人的空间是不是有点用不上呀&#xff0c;怎么才能做到要多少申请多少个呢&#xff1f;&#xff1f;我们学完动态内存管理&#xff0c;和文件的相关操作&#xff0c;终于可以继续完善我们的通讯录了 船新版本…

(搜索) 剑指 Offer 12. 矩阵中的路径 ——【Leetcode每日一题】

❓剑指 Offer 12. 矩阵中的路径 难度&#xff1a;中等 给定一个 m * n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 单词必须按照字母顺序&#xff0c;通过相邻的单元格内的字母构…

UE4/5数字人MetaHuman的控制绑定资产使用

开始操作 首先我们创建一个关卡序列&#xff1a; 打开后将我们的数字人放进去【右键&#xff0c;第一个添加进去】&#xff1a; 我们会自动进入动画模式&#xff0c;没有的话&#xff0c;就自己进入一下&#xff0c; 然后我们去寻找我们的控制绑定资产。 找到控制绑定资产 …

牛客网华为OD前端岗位,面试题库练习记录01

题目一 质数因子 功能:输入一个正整数&#xff0c;按照从小到大的顺序输出它的所有质因子&#xff08;重复的也要列举&#xff09;&#xff08;如180的质因子为2 2 3 3 5 &#xff09; JavaScript Node ACM模式 const rl require("readline").createInterface({ i…

设计HTML5表格

在网页设计中&#xff0c;表格主要用于显示包含行、列结构的二维数据&#xff0c;如财务表格、调查数据、日历表、时刻表、节目表等。在大多数情况下&#xff0c;这类信息都由列标题或行标题及数据构成。本章将详细介绍表格在网页设计中的应用&#xff0c;包括设计符合标准化的…

(7)(7.3) 自动任务中的相机控制

文章目录 前言 7.3.1 概述 7.3.2 自动任务类型 7.3.3 创建合成图像 前言 本文介绍 ArduPilot 的相机和云台命令&#xff0c;并说明如何在 Mission Planner 中使用这些命令来定义相机勘测任务。这些说明假定已经连接并配置了相机触发器和云台(camera trigger and gimbal hav…

我的编程语言学习笔记

前言 作为一名编程初学者&#xff0c;我深知学习编程需要不断积累和记录。在这篇博客文章中&#xff0c;我将分享一些我在学习C/C编程语言过程中记录的常用代码、特定函数、复杂概念以及特定功能。希望能与大家一起切磋进步&#xff01; 常用代码&#xff1a; 1. 输入输出操作…

Algorithem Review 5.2 图论

网络流 设源点为 s s s&#xff0c;汇点为 t t t&#xff0c;每条边 e e e 的流量上限为 c ( e ) c(e) c(e)&#xff0c;流量为 f ( e ) f(e) f(e)。割 指对于某一顶点集合 P ⊂ V P \subset V P⊂V&#xff0c;从 P P P 出发指向 P P P 外部的那些原图中的边的集合&a…

【Docker报错】docker拉取镜像时报错:no such host

报错信息 [rootSoft soft]# docker pull mysql Using default tag: latest Error response from daemon: Head "https://registry-1.docker.io/v2/library/mysql/manifests/latest": dial tcp: lookup registry-1.docker.io on 192.168.80.2:53: no such host解决方法…

【【典型电路设计之片内存储器的设计之RAM的Verilog HDL描述一】】

典型电路设计之片内存储器的设计之RAM的Verilog HDL描述一 RAM是随机存储器&#xff0c;存储单元的内容可按需随意取出或存入。这种存储器在断电后将丢失所有数据&#xff0c;一般用来存储一些短时间内使用的程序和数据。 其内部结构如下图所示&#xff1a; 例&#xff1a;用…

docker简介

目录 docker简介 1.什么是docker 2.基本结构 3.docker优势 4.docker改变了什么 5.docker三大基本概念 1.docker镜像 2.容器 3.仓库 docker简介 1.什么是docker Docker 是一个开源项目&#xff0c; 诞生于 2013 年初&#xff0c;最初是 dotCloud 公司内部的一个业余项目。…

matlab保存图片

仅作为记录&#xff0c;大佬请跳过。 文章目录 用界面中的“另存为”用saveas 用界面中的“另存为” 即可。 参考 感谢大佬博主文章&#xff1a;传送门 用saveas 必须在编辑器中的plot之后用saveas&#xff08;也就是不能在命令行中单独使用——比如在编辑器中plot&#xf…

GuLi商城-前端基础Vue-指令-单向绑定双向绑定

什么是指令? 指令 (Directives) 是带有 v- 前缀的特殊特性。 指令特性的预期值是:单个 JavaScript 表达式。 指令的职责是&#xff0c;当表达式的值改变时&#xff0c;将其产生的连带影响&#xff0c;响应式地作用于DOM 例如我们在入门案例中的 v-on&#xff0c;代表绑定事…

Docker+Selenium Grid搭建自动化测试平台

安装docker yum install -y yum-utils device-mapper-persistent-data lvm2 yum-config-manager –add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo yum install docker-ce -y Create a Docker Network docker network create grid 下载镜像 hu…

蔡司关注全民运动眼健康:与蔡司智锐镜片KEEP住视力健康

众所周知&#xff0c;运动是对我们身体最大的投资&#xff0c;但是对于视力有问题的消费者来说&#xff0c;不合适的眼镜无疑是运动路上的绊脚石&#xff0c;跑步运动时眼镜总是往下掉&#xff0c;不仅没有相对稳定的视野&#xff0c;还特别没安全感&#xff0c;由此可见一副优…

【云原生、k8s】Calico网络策略

第四阶段 时 间&#xff1a;2023年8月17日 参加人&#xff1a;全班人员 内 容&#xff1a; Calico网络策略 目录 一、前提配置 二、Calico网络策略基础 1、创建服务 2、启用网络隔离 3、测试网络隔离 4、允许通过网络策略进行访问 三、Calico网络策略进阶 1、创…