变压器故障诊断(python代码,逻辑回归/SVM/KNN三种方法同时使用,有详细中文注释)

视频效果:变压器三种方法下故障诊断Python代码_哔哩哔哩_bilibili代码运行要求:tensorflow版本>=2.4.0,Python>=3.6.0即可,无需修改数据路径。

1.数据集介绍:

采集数据的设备照片

Transformer

Transformer

变压器在电力系统中扮演着非常重要的角色。尽管它们是电网中最可靠的部件,但由于内部或外部的许多因素,它们也容易发生故障。可能有许多启动器会导致变压器故障,但可能导致灾难性故障的启动器如下:机械故障,电介质故障等

这些数据是从2019年6月25日到2020年4月14日通过物联网设备收集的,每15分钟更新一次。

第一个文件打开 (10列特征)

第二个文件打开 (6列特征,最后一列是标签,正常状态为0,故障为1)

 

参数说明:

电流电压:

VL1-相线1

VL2-相线2

VL3-相线3

IL1-电流线路1

IL2-电流线路2

IL3-电流线路3

VL12-电压线1 2

VL23-电压线2 3

VL31-电压线3 1

INUT-中性点电流

概述:

OTI-机油温度指示器

WTI-绕组温度指示器

ATI-环境温度指示器

OLI-油位指示器

OTI_A-油温指示器报警

OTI_T-油温指示器跳闸

MOG_A-标签:正常未0,故障为1.

2.整个代码流程:

  1. 导入和配置库:导入了所需的数据处理、数据可视化和机器学习相关的库,并进行了matplotlib和seaborn的样式和参数配置。

  2. 数据预处理:读取了两个CSV文件(Overview.csv和CurrentVoltage.csv),将它们转换为DataFrame,并对其中的日期时间列进行了格式转换。

  3. 数据合并:将两个DataFrame(tf和cv)根据时间戳列(DeviceTimeStamp)合并为一个新的DataFrame(transformer)。

  4. 数据可视化:使用matplotlib和seaborn库绘制了多个图表,包括散点图、折线图、计数柱状图和饼图,来可视化不同传感器数据的变化趋势、分布情况等。

  5. 机器学习模型训练和评估:使用scikit-learn库中的机器学习模型(Logistic Regression、SVM、K-Nearest Neighbors)对数据进行了训练,并进行了模型准确率的评估。具体步骤包括:

    • 数据预处理:特征缩放,将特征值缩放到0到1的范围内。
    • 训练集和测试集划分:将数据集划分为训练集和测试集。
    • 模型训练:分别使用Logistic Regression、SVM和K-Nearest Neighbors模型对训练集进行训练。
    • 预测和评估:使用训练好的模型对测试集进行预测,并计算模型的训练准确率和测试准确率。
    • 分类报告和混淆矩阵:打印出分类报告,包括精确率、召回率和F1分数等指标,同时绘制混淆矩阵来展示模型的分类结果。

 3.原始数据特征展示:

3.1.使用sns.relplot函数绘制tf DataFrame中的OTI、ATI和WTI列的关系图,根据MOG_A列进行着色。

3.2. 绘制油温指示器图

 3.3.绘制绕组温度指示器警报图

 3.4.绘制油温指示器警报 OTIT 图

 3.5.绘制温度指示器行程图

 

 3.6 绘制油位指示器图

 3.7.绘制磁性油位指示器图

3.8分别绘制OTI_T列和MOG_A列的计数柱状图和饼图

 

4.三种不同模型下的诊断准确率(log:逻辑回归,svc:支持向量机,knn方法)

训练集和测试集的特征输入。

训练集和测试集的标签输入。 

 

三种方法下测试集的混淆矩阵

 

 数据和代码放在了压缩包里,下载后无需修改数据路径,解压缩后直接运行


import numpy as np  # 导入NumPy库用于数值计算
import pandas as pd  # 导入Pandas库用于数据处理和CSV文件读写
import os  # 导入os库用于操作系统相关功能
for dirname, _, filenames in os.walk('/data'):for filename in filenames:print(os.path.join(dirname, filename))
import pandas as pd  # 导入Pandas库
import numpy as np  # 导入NumPy库
import seaborn as sns  # 导入Seaborn库用于数据可视化
import matplotlib.pyplot as plt  # 导入Matplotlib库用于绘图
import datetime  # 导入datetime库用于日期时间处理
import warnings  # 导入warnings库用于警告管理
from matplotlib import pyplot as plt
#压缩包:https://mbd.pub/o/bread/ZJybm5dq

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/94967.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Spring源码】小白速通解析Spring源码,从0到1,持续更新!

Spring源码 参考资料 https://www.bilibili.com/video/BV1Tz4y1a7FM https://www.bilibili.com/video/BV1iz4y1b75q bean工厂 DefaultListableBeanFactory(最原始) bean的生命周期 创建(实例化)–>依赖注入–>-初始化…

【数据结构】循环队列

💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤 📃个人主页 :阿然成长日记 …

Java课题笔记~ 整合第三方技术

1. 整合JUnit 问题导入 回忆一下Spring整合JUnit的步骤&#xff1f; 1.1 Spring整合JUnit&#xff08;复习&#xff09; 1.2 SpringBoot整合JUnit 【第一步】添加整合junit起步依赖(可以直接勾选) <dependency><groupId>org.springframework.boot</groupId…

1.SpringMVC接收请求参数及数据回显:前端url地址栏传递参数通过转发显示在网页

1、SpringMVC 处理前端提交的数据 1.1 提交的域名和处理方法的参数不一致&#xff0c;使用注解解决 1.2 提交的域名和处理方法的参数不一致&#xff0c;使用注解解决 1.3 提交的是一个对象 2、前端url地址栏传递的是一个参数 请求地址url&#xff1a;http://localhost:8080/s…

如何运用小程序技术闭环运营链路?

如何通过线上小程序获取用户线索&#xff0c;提高企业抗风险能力&#xff0c;建立有效的营销数字化系统一直是困扰每一个小程序开发者与运营者的问题。 当我们选择使用小程序设计自己的运营流程时&#xff0c;从「推广」到「转化」&#xff0c;再到最终的「留存」都是运营过程…

React 全栈体系(二)

第二章 React面向组件编程 一、基本理解和使用 1. 使用React开发者工具调试 2. 效果 2.1 函数式组件 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>1_函数式组件</title> </head> &l…

Qt应用开发(基础篇)——选项卡窗口 QTabWidget

一、前言 QTabWidget类继承于QWidget&#xff0c;是一个拥有选项卡的窗口部件。 QTabWidget类有一个选项卡栏QTabBar和一个页面区域&#xff0c;用来显示和选项卡相关联的界面。用户通过点击选项卡或者自定义快捷方式(ALTKey)切换页面。 二、QTabWidget类 1、count 该属…

文本挖掘 day5:文本挖掘与贝叶斯网络方法识别化学品安全风险因素

文本挖掘与贝叶斯网络方法识别化学品安全风险因素 1. Introduction现实意义理论意义提出方法&#xff0c;目标 2. 材料与方法2.1 数据集2.2 数据预处理2.3 关键字提取2.3.1 TF-IDF2.3.2 改进的BM25——BM25WBM25BM25W 2.3.3 关键词的产生(相关系数) 2.4 关联规则分析2.5 贝叶斯…

Pytorch源码搜索与分析

PyTorch的的代码主要由C10、ATen、torch三大部分组成的。其中&#xff1a; C10 C10&#xff0c;来自于Caffe Tensor Library的缩写。这里存放的都是最基础的Tensor库的代码&#xff0c;可以运行在服务端和移动端。PyTorch目前正在将代码从ATen/core目录下迁移到C10中。C10的代…

【Java 回忆录】Java全栈开发笔记文档

这里能学到什么&#xff1f; 实战代码文档一比一记录实战问题和解决方案涉及前端、后端、服务器、运维、测试各方面通过各方面的文档与代码&#xff0c;封装一套低代码开发平台直接开腾讯会议&#xff0c;实实在线一起分享技术问题核心以 Spring Boot 作为基础框架进行整合后期…

大数据Flink学习圣经:一本书实现大数据Flink自由

学习目标&#xff1a;三栖合一架构师 本文是《大数据Flink学习圣经》 V1版本&#xff0c;是 《尼恩 大数据 面试宝典》姊妹篇。 这里特别说明一下&#xff1a;《尼恩 大数据 面试宝典》5个专题 PDF 自首次发布以来&#xff0c; 已经汇集了 好几百题&#xff0c;大量的大厂面试…

记一次较为详细的某CMS代码审计

前言 本次审计的话是Seay昆仑镜进行漏洞扫描 Seay的话它可以很方便的查看各个文件&#xff0c;而昆仑镜可以很快且扫出更多的漏洞点&#xff0c;将这两者进行结合起来&#xff0c;就可以发挥更好的效果。 昆仑镜官方地址 https://github.com/LoRexxar/Kunlun-M 环境 KKC…

前端笔试+面试分享

以下是个人线下面试遇到的真实的题&#xff0c;仅供参考和学习 1. css 选择符有哪些&#xff1f;哪些属性可以继承&#xff1f;优先级算法加何计算&#xff1f; CSS选择符有很多种&#xff0c;例如类型选择器、类选择器、ID选择器、属性选择器、伪类选择器、伪元素选择器等。 …

前端常用算法(一):防抖+节流

目录 第一章 防抖 1.1 防抖&#xff08;debounce&#xff09;简介 1.2 应用场景 1.3 实现思路 1.4 手撕防抖代码 第二章 节流 2.1 节流&#xff08;throttle&#xff09;简介 2.2 应用场景 2.3 实现思路 2.4 手撕节流代码&#xff08;方法&#xff1a;时间戳和计时器…

简单的洗牌算法

目录 前言 问题 代码展现及分析 poker类 game类 Text类 前言 洗牌算法为ArrayList具体使用的典例&#xff0c;可以很好的让我们快速熟系ArrayList的用法。如果你对ArrayList还不太了解除&#xff0c;推荐先看本博主的ArrayList的详解。 ArrayList的详解_WHabcwu的博客-CSD…

数据结构——链表详解

链表 文章目录 链表前言认识链表单链表结构图带头单循环链表结构图双向循环链表结构图带头双向循环链表结构图 链表特点 链表实现(带头双向循环链表实现)链表结构体(1) 新建头节点(2) 建立新节点(3)尾部插入节点(4)删除节点(5)头部插入节点(6) 头删节点(7) 寻找节点(8) pos位置…

C语言之feof与fgetc应用实例(八十一)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

常见的Web安全漏洞有哪些,Web安全漏洞常用测试方法介绍

Web安全漏洞是指在Web应用程序中存在的可能被攻击者利用的漏洞&#xff0c;正确认识和了解这些漏洞对于Web应用程序的开发和测试至关重要。 一、常见的Web安全漏洞类型&#xff1a; 1、跨站脚本攻击(Cross-Site Scripting&#xff0c;XSS)&#xff1a;攻击者通过向Web页面注入…

雷布斯才是我爱的那斯

在知乎看到一个提问&#xff0c;说谁是程序员的天花板&#xff0c;我想了下&#xff0c;雷布斯可能真的是我辈楷模。 不过讲真&#xff0c;雷布斯我们可能是超越不了的了&#xff0c;不管是作为程序员还是作为老板&#xff0c;雷布斯都比普通人牛逼一大截。 还有&#xff0c;创…

解决hbase节点已下线,但在status中显示为dead问题

工作中需要下线4台hbase小节点&#xff0c;下线完成后使用status 命令查看,有一台为dead状态: 使用status detailed 查看&#xff0c;发现“hd-03"这台节点是dead。 检查各节点配置文件无误&#xff0c;并使用 /opt/hbase/bin/hbase-daemon.sh restart master 重启两个…