实践教程|基于 pytorch 实现模型剪枝

PyTorch剪枝方法详解,附详细代码。

  • 一,剪枝分类

  • 1.1,非结构化剪枝

  • 1.2,结构化剪枝

  • 1.3,本地与全局修剪

  • 二,PyTorch 的剪枝

  • 2.1,pytorch 剪枝工作原理

  • 2.2,局部剪枝

  • 2.3,全局非结构化剪枝

  • 三,总结

  • 参考资料

一,剪枝分类

所谓模型剪枝,其实是一种从神经网络中移除"不必要"权重或偏差(weigths/bias)的模型压缩技术。关于什么参数才是“不必要的”,这是一个目前依然在研究的领域。

1.1,非结构化剪枝

非结构化剪枝(Unstructured Puning)是指修剪参数的单个元素,比如全连接层中的单个权重、卷积层中的单个卷积核参数元素或者自定义层中的浮点数(scaling floats)。其重点在于,剪枝权重对象是随机的,没有特定结构,因此被称为非结构化剪枝

1.2,结构化剪枝

与非结构化剪枝相反,结构化剪枝会剪枝整个参数结构。比如,丢弃整行或整列的权重,或者在卷积层中丢弃整个过滤器(Filter)。

1.3,本地与全局修剪

剪枝可以在每层(局部)或多层/所有层(全局)上进行。

二,PyTorch 的剪枝

目前 PyTorch 框架支持的权重剪枝方法有:

  • Random: 简单地修剪随机参数。

  • Magnitude: 修剪权重最小的参数(例如它们的 L2 范数)

以上两种方法实现简单、计算容易,且可以在没有任何数据的情况下应用。

2.1,pytorch 剪枝工作原理

剪枝功能在 torch.nn.utils.prune 类中实现,代码在文件 torch/nn/utils/prune.py 中,主要剪枝类如下图所示。

图片

pytorch_pruning_api_file.png

剪枝原理是基于张量(Tensor)的掩码(Mask)实现。掩码是一个与张量形状相同的布尔类型的张量,掩码的值为 True 表示相应位置的权重需要保留,掩码的值为 False 表示相应位置的权重可以被删除。

Pytorch 将原始参数 <param> 复制到名为 <param>_original 的参数中,并创建一个缓冲区来存储剪枝掩码 <param>_mask。同时,其也会创建一个模块级的 forward_pre_hook 回调函数(在模型前向传播之前会被调用的回调函数),将剪枝掩码应用于原始权重。

pytorch 剪枝的 api 和教程比较混乱,我个人将做了如下表格,希望能将 api 和剪枝方法及分类总结好。

图片

pytorch_pruning_api

pytorch 中进行模型剪枝的工作流程如下:

  1. 选择剪枝方法(或者子类化 BasePruningMethod 实现自己的剪枝方法)。

  2. 指定剪枝模块和参数名称。

  3. 设置剪枝方法的参数,比如剪枝比例等。

2.2,局部剪枝

Pytorch 框架中的局部剪枝有非结构化和结构化剪枝两种类型,值得注意的是结构化剪枝只支持局部不支持全局。

2.2.1,局部非结构化剪枝

1,局部非结构化剪枝(Locall Unstructured Pruning)对应函数原型如下:

def random_unstructured(module, name, amount)  

1,函数功能:用于对权重参数张量进行非结构化剪枝。该方法会在张量中随机选择一些权重或连接进行剪枝,剪枝率由用户指定。2,函数参数定义:

  • module (nn.Module): 需要剪枝的网络层/模块,例如 nn.Conv2d() 和 nn.Linear()。

  • name (str): 要剪枝的参数名称,比如 “weight” 或 “bias”。

  • amount (int or float): 指定要剪枝的数量,如果是 0~1 之间的小数,则表示剪枝比例;如果是证书,则直接剪去参数的绝对数量。比如amount=0.2 ,表示将随机选择 20% 的元素进行剪枝。

3,下面是 random_unstructured 函数的使用示例。

import torch  
import torch.nn.utils.prune as prune  
conv = torch.nn.Conv2d(1, 1, 4)  
prune.random_unstructured(conv, name="weight", amount=0.5)  
conv.weight  
"""  
tensor([[[[-0.1703,  0.0000, -0.0000,  0.0690],  [ 0.1411,  0.0000, -0.0000, -0.1031],  [-0.0527,  0.0000,  0.0640,  0.1666],  [ 0.0000, -0.0000, -0.0000,  0.2281]]]], grad_fn=<MulBackward0>)  
"""  

可以看出输出的 conv 层中权重值有一半比例为 0

2.2.2,局部结构化剪枝

局部结构化剪枝(Locall Structured Pruning)有两种函数,对应函数原型如下:

def random_structured(module, name, amount, dim)  
def ln_structured(module, name, amount, n, dim, importance_scores=None)  

1,函数功能

与非结构化移除的是连接权重不同,结构化剪枝移除的是整个通道权重。

2,参数定义

与局部非结构化函数非常相似,唯一的区别是您必须定义 dim 参数(ln_structured 函数多了 n 参数)。

n 表示剪枝的范数,dim 表示剪枝的维度。

对于 torch.nn.Linear:

  • dim = 0:移除一个神经元。

  • dim = 1:移除与一个输入的所有连接。

对于 torch.nn.Conv2d:

  • dim = 0(Channels) : 通道 channels 剪枝/过滤器 filters 剪枝

  • dim = 1(Neurons): 二维卷积核 kernel 剪枝,即与输入通道相连接的 kernel

2.2.3,局部结构化剪枝示例代码

在写示例代码之前,我们先需要理解 Conv2d 函数参数、卷积核 shape、轴以及张量的关系。首先,Conv2d 函数原型如下;

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)  

而 pytorch 中常规卷积的卷积核权重 shape 都为(C_out, C_in, kernel_height, kernel_width),所以在代码中卷积层权重 shape[3, 2, 3, 3],dim = 0 对应的是 shape [3, 2, 3, 3] 中的 3。这里我们 dim 设定了哪个轴,那自然剪枝之后权重张量对应的轴机会发生变换。

图片

dim

理解了前面的关键概念,下面就可以实际使用了,dim=0 的示例如下所示。

conv = torch.nn.Conv2d(2, 3, 3)  
norm1 = torch.norm(conv.weight, p=1, dim=[1,2,3])  
print(norm1)  
"""  
tensor([1.9384, 2.3780, 1.8638], grad_fn=<NormBackward1>)  
"""  
prune.ln_structured(conv, name="weight", amount=1, n=2, dim=0)  
print(conv.weight)  
"""  
tensor([[[[-0.0005,  0.1039,  0.0306],  [ 0.1233,  0.1517,  0.0628],  [ 0.1075, -0.0606,  0.1140]],  [[ 0.2263, -0.0199,  0.1275],  [-0.0455, -0.0639, -0.2153],  [ 0.1587, -0.1928,  0.1338]]],  [[[-0.2023,  0.0012,  0.1617],  [-0.1089,  0.2102, -0.2222],  [ 0.0645, -0.2333, -0.1211]],  [[ 0.2138, -0.0325,  0.0246],  [-0.0507,  0.1812, -0.2268],  [-0.1902,  0.0798,  0.0531]]],  [[[ 0.0000, -0.0000, -0.0000],  [ 0.0000, -0.0000, -0.0000],  [ 0.0000, -0.0000,  0.0000]],  [[ 0.0000,  0.0000,  0.0000],  [-0.0000,  0.0000,  0.0000],  [-0.0000, -0.0000, -0.0000]]]], grad_fn=<MulBackward0>)  
"""  

从运行结果可以明显看出,卷积层参数的最后一个通道参数张量被移除了(为 0 张量),其解释参见下图。

图片

dim_understand

dim = 1 的情况:

conv = torch.nn.Conv2d(2, 3, 3)  
norm1 = torch.norm(conv.weight, p=1, dim=[0, 2,3])  
print(norm1)  
"""  
tensor([3.1487, 3.9088], grad_fn=<NormBackward1>)  
"""  
prune.ln_structured(conv, name="weight", amount=1, n=2, dim=1)  
print(conv.weight)  
"""  
tensor([[[[ 0.0000, -0.0000, -0.0000],  [-0.0000,  0.0000,  0.0000],  [-0.0000,  0.0000, -0.0000]],  [[-0.2140,  0.1038,  0.1660],  [ 0.1265, -0.1650, -0.2183],  [-0.0680,  0.2280,  0.2128]]],  [[[-0.0000,  0.0000,  0.0000],  [ 0.0000,  0.0000, -0.0000],  [-0.0000, -0.0000, -0.0000]],  [[-0.2087,  0.1275,  0.0228],  [-0.1888, -0.1345,  0.1826],  [-0.2312, -0.1456, -0.1085]]],  [[[-0.0000,  0.0000,  0.0000],  [ 0.0000, -0.0000,  0.0000],  [ 0.0000, -0.0000,  0.0000]],  [[-0.0891,  0.0946, -0.1724],  [-0.2068,  0.0823,  0.0272],  [-0.2256, -0.1260, -0.0323]]]], grad_fn=<MulBackward0>)  
"""  

很明显,对于 dim=1的维度,其第一个张量的 L2 范数更小,所以shape 为 [2, 3, 3] 的张量中,第一个 [3, 3] 张量参数会被移除(即张量为 0 矩阵) 。

2.3,全局非结构化剪枝

前文的 local 剪枝的对象是特定网络层,而 global 剪枝是将模型看作一个整体去移除指定比例(数量)的参数,同时 global 剪枝结果会导致模型中每层的稀疏比例是不一样的。

全局非结构化剪枝函数原型如下:

# v1.4.0 版本  
def global_unstructured(parameters, pruning_method, **kwargs)  
# v2.0.0-rc2版本  
def global_unstructured(parameters, pruning_method, importance_scores=None, **kwargs):  

1,函数功能

随机选择全局所有参数(包括权重和偏置)的一部分进行剪枝,而不管它们属于哪个层。

2,参数定义

  • parameters((Iterable of (module, name) tuples)): 修剪模型的参数列表,列表中的元素是 (module, name)。

  • pruning_method(function): 目前好像官方只支持 pruning_method=prune.L1Unstuctured,另外也可以是自己实现的非结构化剪枝方法函数。

  • importance_scores: 表示每个参数的重要性得分,如果为 None,则使用默认得分。

  • **kwargs: 表示传递给特定剪枝方法的额外参数。比如 amount 指定要剪枝的数量。

3,global_unstructured 函数的示例代码如下所示。

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  class LeNet(nn.Module):  def __init__(self):  super(LeNet, self).__init__()  # 1 input image channel, 6 output channels, 3x3 square conv kernel  self.conv1 = nn.Conv2d(1, 6, 3)  self.conv2 = nn.Conv2d(6, 16, 3)  self.fc1 = nn.Linear(16 * 5 * 5, 120)  # 5x5 image dimension  self.fc2 = nn.Linear(120, 84)  self.fc3 = nn.Linear(84, 10)  def forward(self, x):  x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))  x = F.max_pool2d(F.relu(self.conv2(x)), 2)  x = x.view(-1, int(x.nelement() / x.shape[0]))  x = F.relu(self.fc1(x))  x = F.relu(self.fc2(x))  x = self.fc3(x)  return x  model = LeNet().to(device=device)  model = LeNet()  parameters_to_prune = (  (model.conv1, 'weight'),  (model.conv2, 'weight'),  (model.fc1, 'weight'),  (model.fc2, 'weight'),  (model.fc3, 'weight'),  
)  prune.global_unstructured(  parameters_to_prune,  pruning_method=prune.L1Unstructured,  amount=0.2,  
)  
# 计算卷积层和整个模型的稀疏度  
# 其实调用的是 Tensor.numel 内内函数,返回输入张量中元素的总数  
print(  "Sparsity in conv1.weight: {:.2f}%".format(  100. * float(torch.sum(model.conv1.weight == 0))  / float(model.conv1.weight.nelement())  )  
)  
print(  "Global sparsity: {:.2f}%".format(  100. * float(  torch.sum(model.conv1.weight == 0)  + torch.sum(model.conv2.weight == 0)  + torch.sum(model.fc1.weight == 0)  + torch.sum(model.fc2.weight == 0)  + torch.sum(model.fc3.weight == 0)  )  / float(  model.conv1.weight.nelement()  + model.conv2.weight.nelement()  + model.fc1.weight.nelement()  + model.fc2.weight.nelement()  + model.fc3.weight.nelement()  )  )  
)  
# 程序运行结果  
"""  
Sparsity in conv1.weight: 3.70%  
Global sparsity: 20.00%  
"""  

运行结果表明,虽然模型整体(全局)的稀疏度是 20%,但每个网络层的稀疏度不一定是 20%。

三,总结

另外,pytorch 框架还提供了一些帮助函数:

  1. torch.nn.utils.prune.is_pruned(module): 判断模块 是否被剪枝。

  2. torch.nn.utils.prune.remove(module, name):用于将指定模块中指定参数上的剪枝操作移除,从而恢复该参数的原始形状和数值。

虽然 PyTorch 提供了内置剪枝 API ,也支持了一些非结构化和结构化剪枝方法,但是 API 比较混乱,对应文档描述也不清晰,所以后面我还会结合微软的开源 nni 工具来实现模型剪枝功能。

更多剪枝方法实践,可以参考这个 github 仓库:Model-Compression。

参考资料

  1. How to Prune Neural Networks with PyTorch

  2. PRUNING TUTORIAL

  3. PyTorch Pruning

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/95110.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++之ostream与ifstream读写文件操作(一百八十二)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

链表之第二回

欢迎来到我的&#xff1a;世界 该文章收入栏目&#xff1a;链表 希望作者的文章对你有所帮助&#xff0c;有不足的地方还请指正&#xff0c;大家一起学习交流 ! 目录 前言第一题&#xff1a;反转一个链表第二题&#xff1a;链表内指定区间反转第三题&#xff1a;判断一个链表…

用Java实现原神抽卡算法

哈喽~大家好&#xff0c;好久没有更新了&#xff0c;也确实遇到了很多事&#xff0c;这篇开始恢复更新&#xff0c;喜欢的话&#xff0c;可以给个的三连&#xff0c;什么&#xff1f;你要白嫖&#xff1f;那可以给个免费的赞麻。 &#x1f947;个人主页&#xff1a;个人主页​​…

揭开区块链地址背后的故事,你需要知道的KYA

作者&#xff5c;Jason Jiang 在区块链世界中&#xff0c;除了交易还有另一个基础要素&#xff1a;地址。在欧科云链日前推出的Onchain AML合规技术方案&#xff0c;也有一个与区块链地址密切相关的概念&#xff1a;KYA&#xff08;Know Your Address&#xff0c;了解你的地址&…

leetcode473. 火柴拼正方形(回溯算法-java)

火柴拼正方形 leetcode473 火柴拼正方形题目描述回溯算法 上期经典算法 leetcode473 火柴拼正方形 难度 - 中等 原题链接 - leetcode473 火柴拼正方形 题目描述 你将得到一个整数数组 matchsticks &#xff0c;其中 matchsticks[i] 是第 i 个火柴棒的长度。你要用 所有的火柴棍…

索引下推介绍

索引下推 介绍作用MySQL5.6之前MySQL5.6及以上版本举例说明 该语句的具体执行 MySQL 5.6之前MySQL 5.6之后判断方法总结 介绍 索引条件下推&#xff0c;也叫索引下推&#xff0c;英文全称‘Index Condition Pushdown’, 简称ICP。 作用 索引下推是MySQL5.6新添加的特性&#xf…

Spring Clould 消息队列 - RabbitMQ

视频地址&#xff1a;微服务&#xff08;SpringCloudRabbitMQDockerRedis搜索分布式&#xff09; 初识MQ-同步通讯的优缺点&#xff08;P61&#xff0c;P62&#xff09; 同步和异步通讯 微服务间通讯有同步和异步两种方式&#xff1a; 同步通讯&#xff1a;就像打电话&…

grafana中利用变量来添加dashboard详情页地址实现点击跳转

背景 最近弄grafana的dashboard,突然想到各个dashboard之前可以直接跳转到不同详细页面的面板,于是找了找实现方法 实现 以stat 格式的面板为例,显示出各个pod的对应状态, PromQL是(avg(kube_pod_status_phase{phase"Running", namespace!"kube-system"…

C#语音播报问题之 无法嵌入互操作类型SpVoiceClass,请改用适用的窗口

C#语音播报问题之 无法嵌入互操作类型SpVoiceClass&#xff0c;请改用适用的窗口 解决办法如下&#xff1a; 只需要将引入的Interop.SpeechLib的属性嵌入互操作类型改为false 改为false 即可解决&#xff01;

Docker Compose安装

官网地址&#xff1a;Install the Compose plugin | Docker Documentation 安装前先更新docker&#xff0c;避免版本不匹配问题。最新版或者自定版本 sudo yum install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin 安装&#xff1a; …

生信豆芽菜-差异基因富集分析的圈图

网址&#xff1a;http://www.sxdyc.com/visualsEnrichCirplot 1、数据准备 准备一个基因集的文件 2、选择富集分析的数据库&#xff0c;同时输入展示top几的条目&#xff0c;选择颜色&#xff0c;如果是GO的话选择三个颜色&#xff0c;如果是KEGG选择一个&#xff0c;如果是G…

使用wxPython和PyMuPDF在Python中显示PDF目录的实现

展示如何使用wxPython和PyMuPDF库在Python中选择PDF文件并将目录显示在列表框中。 简介&#xff1a; 在本篇教程中&#xff0c;我们将学习如何使用wxPython和PyMuPDF库在Python中选择PDF文件&#xff0c;并将其目录显示在一个列表框中。这将使用户能够方便地浏览PDF文档的目录…

双指针算法

文章目录 双指针算法leetcode题目 双指针算法 双指针算法可以实现对于时间复杂度降一维度&#xff0c;使得O(n2)的算法时间复杂度变为O(n) 指针类型 对撞指针快慢指针 对撞指针 一般是用于顺序结构中的&#xff0c;也可以称为左右指针&#xff0c;从两端向中间移动&#xff0c…

【Mysql 连接报错】

文章目录 遇到问题查看用户信息修改加密规则成功连入mysql 遇到问题 socket: auth failed …/…/lualib/skynet/socketchannel.lua:482: errno:1251, msg:Client does not support authentication protocol requested by server; consider upgrading MySQL client,sqlstate:080…

MS Word表格宽度自适应

x.1 问题&#xff1a; 你的表格可能并没有占满整行&#xff0c;且右对齐&#xff0c;例如如下&#xff0c; x.2 解决方式 这个时候你想右对齐&#xff0c;你可以这么操作&#xff0c;点左上角的十字全选表格&#xff0c; 在布局里选择自动对齐&#xff0c; 对齐方式选择居中右…

信息与通信工程面试准备——数学知识|正态分布|中心极限定理

目录 正态分布 正态分布的参数 正态分布的第一个参数是均值 正态分布的第二个参数是标准差SD 所有正态分布的共同特征 标准正态分布&#xff1a;正态分布的特例 中心极限定理 理解定义 示例# 1 示例# 2 知道样本均值总是正态分布的实际含义是什么&#xff1f; 正态分…

设计HTML5列表和超链接

在网页中&#xff0c;大部分信息都是列表结构&#xff0c;如菜单栏、图文列表、分类导航、新闻列表、栏目列表等。HTML5定义了一套列表标签&#xff0c;通过列表结构实现对网页信息的合理排版。另外&#xff0c;网页中还包含大量超链接&#xff0c;通过它实现网页、位置的跳转&…

使用Python批量将Word文件转为PDF文件

说明&#xff1a;在使用Minio服务器时&#xff0c;无法对word文件预览&#xff0c;如果有需要的话&#xff0c;可以将word文件转为pdf文件&#xff0c;再存储到Minio中&#xff0c;本文介绍如何批量将word文件&#xff0c;转为pdf格式的文件&#xff1b; 安装库 首先&#xff…

DaVinci Resolve Studio 18 for Mac 达芬奇调色

DaVinci Resolve Studio 18是一款专业的视频编辑和调色软件&#xff0c;适用于电影、电视节目、广告等各种视觉媒体的制作。它具有完整的后期制作功能&#xff0c;包括剪辑、调色、特效、音频处理等。 以下是DaVinci Resolve Studio 18的主要特点&#xff1a; - 提供了全面的视…

一次Linux中的木马病毒解决经历(6379端口---newinit.sh)

病毒入侵解决方案 情景 最近几天一直CPU100%,也没有注意看到了以为正常的服务调用,直到腾讯给发了邮件警告说我的服务器正在入侵其他服务器的6379端口,我就是正常的使用不可能去入侵别人的系统的,这是违法的. 排查 既然入侵6379端口,就怀疑是通过我的Redis服务进入的我的系统…