设计模式之原型模式

文章目录

  • 一、介绍
  • 二、实现步骤
  • 三、案例
  • 四、应用
  • 五、细胞分裂
  • 六、改造细胞分裂逻辑
  • 七、总结

一、介绍

原型模式属于创建型设计模式,用于创建重复的对象,且同时又保证了性能

该设计模式的好处是将对象的创建与调用方分离

其目的就是**根据一个对象(称为原型)创建一个与其完全相同的对象(当然内存地址不同)。**原对象被认为是新对象的原型。

二、实现步骤

原型模式的实现步骤如下:

  • 应用原型模式的类要实现Cloneable接口
  • 应用原型模式的类要重写Object类定义的clone()方法
  • 通过调用对象的clone()方法,获得一个与该对象相同的对象。

在重写Object类定义的clone()方法时,直接通过调用super.clone()即可得到一个新对象,如下所示

@Override
public Object clone() {try {Object obj = super.clone();return obj;} catch (CloneNotSupportedException e) {throw new AssertionError();}
}

super.clone()调用的其实就是在Object类中定义的方法

public class Object {// ...protected native Object clone() throws CloneNotSupportedException;// ...
}

该方法由native关键字修饰,表明其具体实现逻辑在JVM中已经完成了,我们无需知道其细节,只需知道调用该方法后将返回一个具有相同属性的对象即可。也正因此,该方式要比我们创建实例再初始化实例的性能好。

另外,该方法显式地抛出了CloneNotSupportedException异常,要求我们在调用clone()方法的对象必须实现Cloneable接口,否则将抛出该异常。

注意:调用super.clone()时,只能够满足浅拷贝,如果要实现深拷贝,则需要我们根据实际情况重写clone()的具体逻辑而不是调用super.clone()

三、案例

我们创建一个Person类,实现Cloneable接口,并重写clone()方法。

public class Person implements Cloneable{private String name;private Integer age;private String sex;// 省略get、set方法@Overridepublic Person clone() {try {Person person = (Person) super.clone();return person;} catch (CloneNotSupportedException e) {throw new AssertionError();}}
}

然后进行测试

public class PrototypeTest {public static void main(String[] args) {Person person = new Person();person.setName("name");person.setAge(1);person.setSex("男");Person clone = person.clone();System.out.println("获得的新对象:" + clone);}
}

得到的输出如下,可以发现,通过clone()方法可以获得一个与原对象具有相同属性的新对象。

在这里插入图片描述

四、应用

原型模式在实际应用中不是很广泛,因为绝大多数实例要么是有状态的(例如持有文件、远程链接等),则无法应用原型模式;要么是无状态的,此时应用单例模式更合适。

思来想去,基于原型模式创建重复对象的作用,我们可以利用该模式模拟细胞分裂

五、细胞分裂

按照上面案例,我们新建一个细胞类Cell

public class Cell implements Cloneable{// 当前细胞为第num次分裂所得,细胞分裂是一个1变2,2变4,4变8的过程,private Integer num = 0;@Overridepublic Cell clone() {try {// 每当克隆一次,num+1num++;Cell clone = (Cell) super.clone();return clone;} catch (CloneNotSupportedException e) {throw new AssertionError();}}
}

演示细胞分裂过程

public static void cellDivision() {// 第一个细胞Cell cell1 = new Cell();System.out.println("cell1:" + cell1);// cell1 通过自我复制, 产生一个新细胞 cell2Cell cell2 = cell1.clone();System.out.println("第一次分裂后:");System.out.println("cell1:" + cell1);System.out.println("cell2:" + cell2);// cell1、cell2 通过自我复制, 产生新细胞 cell3、cell4Cell cell3 = cell1.clone();Cell cell4 = cell2.clone();System.out.println("第二次分裂后:");System.out.println("cell1:" + cell1);System.out.println("cell2:" + cell2);System.out.println("cell3:" + cell3);System.out.println("cell4:" + cell4);
}

输出如下:

在这里插入图片描述

此时如果要计算当前一共有多少个细胞,就可以通过 2 n u m 2^{num} 2num得到结果。

六、改造细胞分裂逻辑

我们将N个细胞(无论分裂多少次)作为一个整体,假设该整体中所有细胞同时分裂,则可以将该细胞整体进行抽象。如下所示,新建一个细胞整体类Cells

  • 实现Cloneable接口,表示该细胞整体可进行复制分裂。
  • 重写clone()方法,该细胞整体分裂的过程,其实就是所有个体在分裂,最后将其整合即可
public class Cells implements Cloneable{// 该细胞整体中的所有细胞个体private List<Cell> cellList = new ArrayList<>();// 添加一个细胞public void addCell(Cell cell) {cellList.add(cell);}// 该细胞整体复制分裂的过程@Overridepublic Cells clone() {try {System.out.println("第" + (cellList.get(0).getNum()+1) + "次分裂...");// 新增的细胞数量和原细胞数量相同List<Cell> clonedCellList = new ArrayList<>(cellList.size());for (Cell cell : cellList) {// 将每一个细胞分裂得到的新细胞添加到clonedCellList集合中clonedCellList.add(cell.clone());}// 新细胞与原细胞合并cellList.addAll(clonedCellList);// 复制该细胞整体Cells clone = (Cells) super.clone();clone.setCellList(cellList);System.out.println("分裂后得到细胞数:" + cellList.size());return clone;} catch (CloneNotSupportedException e) {throw new AssertionError();}}
}

下面我们对该细胞整体的分裂过程进行演示

public static void cellDivision() {// 第一个细胞Cell cell = new Cell();// 向该细胞整体中添加第一个细胞Cells cells = new Cells();cells.addCell(cell);// 细胞分裂10次for (int i = 0; i < 10; i++) {cells = cells.clone();}
}

输出如下:

在这里插入图片描述

七、总结

  • 原型模式用于创建具有相同属性的重复对象。
  • 原型模式的实现就是实现Cloneable接口 + 重写clone()方法实现的。
  • Object类的clone()方法实现由JVM实现,性能较好。但仅能实现浅拷贝。


纸上得来终觉浅,绝知此事要躬行。

————————我是万万岁,我们下期再见————————

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/95617.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【UE】Web Browser内嵌网页在场景中的褪色问题

使用WebBrowser放置在场景中时&#xff0c;网页颜色会出现异常的褪色。 这是因为 Web 浏览器插件以 sRGB 格式输出其颜色数据&#xff0c;而 Widget/3D Widget 需要线性 RGB 格式的数据。 可以通过创建在 3D Widget 中使用的新材质&#xff08;而不是默认的 Widget3DPassthr…

数字化施工:解决传统施工难题,提高施工效率和质量的行业革命

建筑行业是我国国民经济的重要组成部分&#xff0c;也是支柱性产业之一。然而&#xff0c;建筑业同时也是一个安全事故多发的高风险行业。如何加强施工现场的安全管理&#xff0c;降低事故发生的频率&#xff0c;避免各种违规操作和不文明施工&#xff0c;提高建筑工程的质量&a…

chatglm2-6b模型在9n-triton中部署并集成至langchain实践 | 京东云技术团队

一.前言 近期&#xff0c; ChatGLM-6B 的第二代版本ChatGLM2-6B已经正式发布&#xff0c;引入了如下新特性&#xff1a; ①. 基座模型升级&#xff0c;性能更强大&#xff0c;在中文C-Eval榜单中&#xff0c;以51.7分位列第6&#xff1b; ②. 支持8K-32k的上下文&#xff1b…

955 神仙公司名单

你是否想过&#xff0c;有一种公司&#xff0c;每天上班不打卡&#xff0c;没有绩效考核&#xff0c;员工可以带着宠物上班&#xff0c;还有公司专门的健身房和游戏室&#xff1f;这样的公司&#xff0c;真的存在&#xff01;今天我们就来探秘这个传说中的955神仙公司&#xff…

java并发:synchronized锁详解

背景&#xff1a; 在java多线程当中&#xff0c;我们总有遇到过多个线程操作一个共享数据时&#xff0c;而这个最后的代码执行结果并没有按照我们的预期一样得到正确的结果。此时我们就需要让代码执行在操作共享变量时&#xff0c;要等一个线程操作完毕时&#xff0c;另一个线程…

【云原生,k8s】Helm应用包管理器介绍

目录 一、为什么需要Helm&#xff1f; &#xff08;一&#xff09;Helm介绍 &#xff08;二&#xff09;Helm有3个重要概念&#xff1a; &#xff08;三&#xff09;Helm特点 二、Helm V3变化 &#xff08;一&#xff09;架构变化 &#xff08;二&#xff09;自动创建名…

从其他地方复制的内容无法粘贴到idea中

问题描述 提示&#xff1a;这里描述项目中遇到的问题&#xff1a; 使用 idea 开发的时候&#xff0c;从其他地方复制的内容无法粘贴到 idea中&#xff0c;idea的版本是 2023.2 解决方案&#xff1a; 提示&#xff1a;这里填写该问题的具体解决方案&#xff1a; 网上查找资料…

redis — 基于Spring Boot实现redis延迟队列

1. 业务场景 延时队列场景在我们日常业务开发中经常遇到&#xff0c;它是一种特殊类型的消息队列&#xff0c;它允许把消息发送到队列中&#xff0c;但不立即投递给消费者&#xff0c;而是在一定时间后再将消息投递给消费者。延迟队列的常见使用场景有以下几种&#xff1a; 在…

SpringBoot3集成Kafka

标签&#xff1a;Kafka3.Kafka-eagle3&#xff1b; 一、简介 Kafka是一个开源的分布式事件流平台&#xff0c;常被用于高性能数据管道、流分析、数据集成和关键任务应用&#xff0c;基于Zookeeper协调的处理平台&#xff0c;也是一种消息系统&#xff0c;具有更好的吞吐量、内…

【云原生】3分钟快速在Kubernetes部署Prometheus2.42+Grafana9.5.1+Alertmanager0.25

文章目录 1、简介2、GitHub地址3、环境信息4、安装5、访问Grafana1、简介 Prometheus-operator帮助我们快速创建Prometheus+Grafana+Alertmanager等服务,而kube-prometheus更加完整的帮助我们搭建全套监控体系,这包括部署多个 Prometheus 和 Alertmanager 实例, 指标导出器…

axios / fetch 实现 stream 流式请求

axios 是一个支持node端和浏览器端的易用、简洁且高效的http库。本文主要介绍 axios 如何实现 stream 流式请求&#xff0c;注意这里需要区分 node 环境和浏览器环境。 一、node端 代码演示&#xff1a; const axios require(axios);axios({method: get,url: http://tiven.c…

系统架构设计师-信息安全技术(2)

目录 一、安全架构概述 1、信息安全所面临的威胁 二、安全模型 1、安全模型的分类 2、BLP模型 3、Biba 模型 4、Chinese Wall模型 三、信息安全整体架构设计 1、WPDRRC模型 2、各模型的安全防范功能 四、网络安全体系架构设计 1、开放系统互联安全体系结构 2、安全服务与安…

[保研/考研机试] KY103 2的幂次方 上海交通大学复试上机题 C++实现

题目链接&#xff1a; KY103 2的幂次方 https://www.nowcoder.com/share/jump/437195121691999575955 描述 Every positive number can be presented by the exponential form.For example, 137 2^7 2^3 2^0。 Lets present a^b by the form a(b).Then 137 is present…

0基础入门C++之类和对象上篇

目录 1.面向过程和面向对象初步认识2.类的引入3.类的定义3.1类的两种定义方式:3.2成员变量命名规则的建议 4.类的访问限定符及封装4.1访问限定符4.2封装 5.类的作用域6.类的实例化7.类对象模型7.1如何计算类对象的大小7.2 类对象的存储方式猜测 8.this指针8.1this指针的引出8.2…

数据的深海潜行:数据湖、数据仓库与数据湖库之间的微妙关系

导言&#xff1a;数据的重要性与存储挑战 在这个信息爆炸的时代&#xff0c;数据已经成为企业的核心资产&#xff0c;而如何高效、安全、便捷地存储这些数据&#xff0c;更是每个组织面临的重大挑战。 数据作为组织的核心资产 数据在过去的几十年里从一个辅助工具演变成企业的…

CS:GO升级 Linux不再是“法外之地”

在前天的VAC大规模封禁中&#xff0c;有不少Linux平台的作弊玩家也迎来了“迟到”的VAC封禁。   一直以来&#xff0c;Linux就是VAC封禁的法外之地。虽然大部分玩家都使用Windows平台进行游戏。但实际上&#xff0c;使用Linux畅玩CS:GO的玩家也不在少数。 以前V社主要打击W…

整理mongodb文档:索引

个人博客 整理mongodb文档:索引 个人博客&#xff0c;求关注&#xff0c;有问题的地方欢迎指出&#xff0c;觉得讲解的繁琐的也请指出 文章概叙 本文主要还是在shell下的操作。让大家了解下mongodb中index的用途&#xff0c;基本的索引的新增、查看、删除等&#xff0c;最后…

【JavaScript】使用js实现滑块验证码功能与浏览器打印

滑块验证码 效果图&#xff1a; 实现思路&#xff1a; 根据滑块的最左侧点跟最右侧点&#xff0c; 是否在规定的距离内【页面最左侧为原点】&#xff0c;来判断是否通过 html代码&#xff1a; <!DOCTYPE html> <html><head><title>滑动图片验证码&…

关于路由器和DNS解析的一些新理解

其实我本人对于交换机和路由器这些网络硬件是比较感兴趣的&#xff0c;也在一点一点的学习相关知识&#xff0c;每次解决一个问题&#xff0c;就让我对一些事情有新的思考。。 今天前台同事&#xff0c;的机器突然上不了网&#xff0c;&#xff0c;和领导一起去看了一波&#…

《Go 语言第一课》课程学习笔记(八)

基本数据类型 Go 原生支持的数值类型有哪些&#xff1f; Go 语言的类型大体可分为基本数据类型、复合数据类型和接口类型这三种。 其中&#xff0c;我们日常 Go 编码中使用最多的就是基本数据类型&#xff0c;而基本数据类型中使用占比最大的又是数值类型。 整型 Go 语言的…