代码随想录算法训练营第三十八天 | 理论基础,509. 斐波那契数,70. 爬楼梯,746. 使用最小花费爬楼梯

代码随想录算法训练营第三十八天 | 理论基础,509. 斐波那契数,70. 爬楼梯,746. 使用最小花费爬楼梯

  • 理论基础
    • 什么是动态规划
    • 动态规划的解题步骤
    • 动态规划应该如何debug
  • 509. 斐波那契数
    • 递归解法
  • 70. 爬楼梯
  • 746. 使用最小花费爬楼梯

理论基础

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
视频讲解

什么是动态规划

如果某一问题有很多重叠子问题,使用动态规划是最有效的,所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的,例如:有N件物品和一个最多能背重量为W 的背包,第i件物品的重量是weight[i],得到的价值是value[i],每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大,动态规划中dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i]),但如果是贪心呢,每次拿物品选一个最大的或者最小的就完事了,和上一个状态没有关系,所以贪心解决不了动态规划的问题其实大家也不用死扣动规和贪心的理论区别,后面做做题目自然就知道了,而且很多讲解动态规划的文章都会讲最优子结构啊和重叠子问题啊这些,这些东西都是教科书的上定义,晦涩难懂而且不实用,大家知道动规是由前一个状态推导出来的,而贪心是局部直接选最优的,对于刷题来说就够用了,上述提到的背包问题,后序会详细讲解

动态规划的解题步骤

对于动态规划问题,我将拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!

  1. 确定dp数组以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

动态规划应该如何debug

找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果

509. 斐波那契数

题目链接
视频讲解
斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列,该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和,也就是:
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n ,请计算 F(n)

输入:n = 4
输出:3

动规五部曲:
这里我们要用一个一维dp数组来保存递归的结果,确定dp数组以及下标的含义,dp[i]的定义为:第i个数的斐波那契数值是dp[i],确定递推公式,为什么这是一道非常简单的入门题目呢?因为题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];dp数组如何初始化,题目中把如何初始化也直接给我们了,如下:

dp[0] = 0;
dp[1] = 1;

确定遍历顺序
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的,举例推导dp数组,按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:
0 1 1 2 3 5 8 13 21 34 55
如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的

class Solution {
public:int fib(int N) {if (N <= 1) return N;vector<int> dp(N + 1);dp[0] = 0;dp[1] = 1;for (int i = 2; i <= N; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[N];}
};

当然可以发现,我们只需要维护两个数值就可以了,不需要记录整个序列
代码如下:

class Solution {
public:int fib(int N) {if (N <= 1) return N;int dp[2];dp[0] = 0;dp[1] = 1;for (int i = 2; i <= N; i++) {int sum = dp[0] + dp[1];dp[0] = dp[1];dp[1] = sum;}return dp[1];}
};

递归解法

class Solution {
public:int fib(int N) {if (N < 2) return N;return fib(N - 1) + fib(N - 2);}
};

70. 爬楼梯

题目链接
视频讲解
假设你正在爬楼梯,需要 n 阶你才能到达楼顶,每次你可以爬 1 或 2 个台阶,你有多少种不同的方法可以爬到楼顶呢?

输入:n = 3
输出:3

本题如果没有接触过的话,会感觉比较难,多举几个例子,就可以发现其规律,爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法,那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层,所以到第三层楼梯的状态可以由第二层楼梯 和 到第一层楼梯状态推导出来,那么就可以想到动态规划了
我们来分析一下,动规五部曲:
定义一个一维数组来记录不同楼层的状态
1.确定dp数组以及下标的含义
dp[i]: 爬到第i层楼梯,有dp[i]种方法
2.确定递推公式
如何可以推出dp[i]呢?从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来,首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么,还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么,那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!所以dp[i] = dp[i - 1] + dp[i - 2],在推导dp[i]的时候,一定要时刻想着dp[i]的定义,否则容易跑偏这体现出确定dp数组以及下标的含义的重要性!
3.dp数组如何初始化
再回顾一下dp[i]的定义:爬到第i层楼梯,有dp[i]种方法,那么i为0,dp[i]应该是多少呢,这个可以有很多解释,但基本都是直接奔着答案去解释的,例如强行安慰自己爬到第0层,也有一种方法,什么都不做也就是一种方法即:dp[0] = 1,相当于直接站在楼顶,但总有点牵强的成分,那还这么理解呢:我就认为跑到第0层,方法就是0啊,一步只能走一个台阶或者两个台阶,然而楼层是0,直接站楼顶上了,就是不用方法,dp[0]就应该是0.其实这么争论下去没有意义,大部分解释说dp[0]应该为1的理由其实是因为dp[0]=1的话在递推的过程中i从2开始遍历本题就能过,然后就往结果上靠去解释dp[0] = 1,从dp数组定义的角度上来说,dp[0] = 0 也能说得通,需要注意的是:题目中说了n是一个正整数,题目根本就没说n有为0的情况,所以本题其实就不应该讨论dp[0]的初始化!我相信dp[1] = 1,dp[2] = 2,这个初始化大家应该都没有争议的,所以我的原则是:不考虑dp[0]如何初始化,只初始化dp[1] = 1,dp[2] = 2,然后从i = 3开始递推,这样才符合dp[i]的定义
4.确定遍历顺序
从递推公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,遍历顺序一定是从前向后遍历的
5.举例推导dp数组
举例当n为5的时候,dp table(dp数组)应该是这样的
在这里插入图片描述
如果代码出问题了,就把dp table 打印出来,看看究竟是不是和自己推导的一样,此时大家应该发现了,这不就是斐波那契数列么!唯一的区别是,没有讨论dp[0]应该是什么,因为dp[0]在本题没有意义

class Solution {
public:int climbStairs(int n) {if (n <= 1) return n; // 因为下面直接对dp[2]操作了,防止空指针vector<int> dp(n + 1);dp[1] = 1;dp[2] = 2;for (int i = 3; i <= n; i++) { // 注意i是从3开始的dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}
};

746. 使用最小花费爬楼梯

题目链接
视频讲解
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用,一旦你支付此费用,即可选择向上爬一个或者两个台阶,你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯,请你计算并返回达到楼梯顶部的最低花费

输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6

1.确定dp数组以及下标的含义
使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了,dp[i]的定义:到达第i台阶所花费的最少体力为dp[i],对于dp数组的定义,一定要清晰!
2.确定递推公式
可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2],dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1],dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2],那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
3.dp数组如何初始化
看一下递归公式,dp[i]由dp[i - 1],dp[i - 2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出,那么 dp[0] 应该是多少呢? 根据dp数组的定义,到达第0台阶所花费的最小体力为dp[0],那么有同学可能想,那dp[0] 应该是 cost[0],例如 cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 的话,dp[0] 就是 cost[0] 应该是1,这里就要说明本题力扣为什么改题意,而且修改题意之后 就清晰很多的原因了,新题目描述中明确说了 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 也就是说 到达 第 0 个台阶是不花费的,但从 第0 个台阶 往上跳的话,需要花费 cost[0],所以初始化 dp[0] = 0,dp[1] = 0;
4.确定遍历顺序
最后一步,递归公式有了,初始化有了,如何遍历呢?本题的遍历顺序其实比较简单,简单到都忽略了思考这一步直接就把代码写出来了,因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了,但是稍稍有点难度的动态规划,其遍历顺序并不容易确定下来。 例如:01背包,都知道两个for循环,一个for遍历物品嵌套一个for遍历背包容量,那么为什么不是一个for遍历背包容量嵌套一个for遍历物品呢? 以及在使用一维dp数组的时候遍历背包容量为什么要倒序呢?这些都与遍历顺序息息相关
5.举例推导dp数组
拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化,如下
在这里插入图片描述

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {vector<int> dp(cost.size() + 1);dp[0] = 0; // 默认第一步都是不花费体力的dp[1] = 0;for (int i = 2; i <= cost.size(); i++) {dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}return dp[cost.size()];}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/96339.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序:函数节流与函数防抖

目录 问题引入&#xff1a; 定义 解决方案&#xff1a;函数节流 一、案例举例 1.页面展示 2.search.wxml标签展示 3.search.js展示 4.结果展示 二、函数节流解决问题 1.函数 2.实例应用 三、函数防抖解决问题 1.函数 2.原理 3.应用场景 4.应用实例 总结 问题引入…

Python3的print用法

目录 一&#xff1a;print语法 二&#xff1a;print结尾参数end用法 三&#xff1a;print分隔符参数sep用法 四&#xff1a;print固定宽度字符输出 一&#xff1a;print语法 print(*objects, sep , end\n, filesys.stdout, flushFalse) 参数解释&#xff1a; &q…

【计算机设计大赛】国赛一等奖项目分享——基于多端融合的化工安全生产监管可视化系统

文章目录 一、计算机设计大赛国赛一等奖二、项目背景三、项目简介四、系统架构五、系统功能结构六、项目特色&#xff08;1&#xff09;多端融合&#xff08;2&#xff09;数据可视化&#xff08;3&#xff09;计算机视觉&#xff08;目标检测&#xff09; 七、系统界面设计&am…

虹科展会 | 自动驾驶展品:上海汽车测试展精彩回顾

2023年8月9日-8月11日&#xff0c;上海国际汽车测试及质量监控博览会在上海圆满落幕。本次展会提供了一个了解最新汽车测试及质量监控技术、产品和趋势的机会&#xff0c;同时也是汽车测试及质量监控领域的专业人士和业内人士的重要交流平台。 雅名特是虹科旗下子公司&#xff…

springcloud3 hystrix实现服务熔断的案例配置3

一 hystrix的熔断原理 1.1 hystrix的熔断原理 在springcloud的框架里&#xff0c;熔断机制是通过hystrix实现&#xff0c;hystrix会监控服务之间的调用。当失败调用达到一定的阈值&#xff0c;默认是5s内失败20次&#xff0c;就会启用hystrix的熔断机制&#xff0c;使用命Hy…

Python Opencv实践 - 图像透射变换

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) rows,cols img.shape[:2] print(rows,cols)#opencv中的透射变换&#xff0c;需要一个3x3透射变换矩阵 #这个矩阵可以通过…

内核配置知识

Linux内核配置系统的组成 Linux内核源码很多&#xff0c;有上千条配置选项&#xff0c;配置相当复杂。 为了更好选择自己想要的功能配置&#xff0c;linux内核源码组织了一个配置系统&#xff1b; 配置系统包括三部分&#xff1a; Makefile&#xff1a;负责整体的配置编译 …

0101读写分离测试-jdbc-shardingsphere-中间件

文章目录 1 前言2、创建SpringBoot程序2.1、创建项目2.2、添加依赖2.3、生成实体类、service与Mapper1.5、配置读写分离 2、测试2.1、读写分离测试2.2、事务测试2.3、负载均衡测试 结语 1 前言 shardingshpere-jdbc定位为轻量级 Java 框架&#xff0c;在 Java 的 JDBC 层提供的…

【python办公自动化】PysimpleGUI中更新Listbox组件选定元素的格式

pysimplegui中更新Listbox组件选定元素的格式 背景问题解决创建窗口布局创建窗口背景 在进行打分时候,由于打分的指标较多,因此为了辨别已经打完分数的指标,可以考虑对打过分的指标进行标记,故可以采用格式修改的方法调整,比如添加一些特殊标记 问题解决 import PySim…

自动驾驶数据集汇总

1.Nuscenes 数据集链接&#xff1a;nuScenes nuscenes数据集下有多个任务&#xff0c;涉及Detection&#xff08;2D/3D&#xff09;、Tracking、prediction、激光雷达分割、全景任务、规划控制等多个任务&#xff1b; nuScenes数据集是一个具有三维目标注释的大型自动驾驶数…

C语言中常见的一些语法概念和功能

常用代码&#xff1a; 程序入口&#xff1a;int main() 函数用于定义程序的入口点。 输出&#xff1a;使用 printf() 函数可以在控制台打印输出。 输入&#xff1a;使用 scanf() 函数可以接收用户的输入。 条件判断&#xff1a;使用 if-else 语句可以根据条件执行不同的代码…

中期国际:MT4挂单和止损设置教程:善用限价和止损单来管理风险

在外汇交易中&#xff0c;合理设置挂单和止损是保护资金和管理风险的重要手段。MT4平台提供了便捷的挂单和止损功能&#xff0c;帮助交易者更好地控制交易风险。本文将为您介绍如何善用限价和止损单来管理风险&#xff0c;以及在MT4平台上的操作步骤。 一、设置限价挂单 限价挂…

⛳ Docker - Centos 安装配置

目录 ⛳ Docker - Centos 安装配置&#x1f3ed; Docker 安装&#xff1a;&#x1f4e2; 一、安装依赖包&#x1f4ac; 二、添加 Docker 下载源地址&#x1f43e; 三、更新yum缓存&#x1f463; 四、安装Docker&#x1f4bb; 五、启动Docker&#x1f381; 六、查看Docker状态和…

macOS - 安装使用 libvirt、virsh

文章目录 关于 libvirt使用安装启动服务virsh 交互模式virsh 帮助命令 关于 libvirt libvirt 官网&#xff1a; https://libvirt.org/gitlab : https://gitlab.com/libvirt/libvirtgithub : https://github.com/libvirt/libvirt 只读&#xff0c;gitlab 的镜像 libvirt是一套…

Git常见操作

一、全局配置命令 配置级别&#xff1a; –local&#xff08;默认&#xff0c;高级优先&#xff09;&#xff1a;只影响本地仓库 –global(中优先级)&#xff1a;只影响所有当前用户的git仓库 –system&#xff08;低优先级&#xff09;&#xff1a;影响到全系统的git仓库 1…

核能的发展与应用

目录 1.核能的概念 2.核能的实现原理 3.核能的利与弊 4.核能未来的发展趋势 1.核能的概念 核能是指利用核反应过程中释放出的能量来产生电力或其他形式能量的能源形式。核能主要通过核裂变和核聚变两种方式产生。 1. 核裂变&#xff1a;核裂变是指重核&#xff08;通常是铀、…

04.Show, Attend and Tell

目录 前言泛读摘要IntroductionRelated Work小结 精读编码器&#xff1a;特征卷积解码器&#xff1a;LSTM网络随机硬注意力和确定软注意力机制硬注意力软注意力双重随机注意力 训练实验数据集评估过程定量分析定性分析 结论 代码&#xff08;略&#xff09; 前言 本课程来自深…

多维时序 | MATLAB实现PSO-CNN-BiLSTM多变量时间序列预测

多维时序 | MATLAB实现PSO-CNN-BiLSTM多变量时间序列预测 目录 多维时序 | MATLAB实现PSO-CNN-BiLSTM多变量时间序列预测基本介绍模型特点程序设计参考资料 基本介绍 本次运行测试环境MATLAB2021b&#xff0c;MATLAB实现PSO-CNN-BiLSTM多变量时间序列预测。代码说明&#xff1a…

Unity Bolt使用协程等待

使用Unity bolt插件可以进行一些简单逻辑开发。本质上相当于把C#接口以图形化的方式进行调用。但是怎么使用协程进行等待呢。经过一些研究&#xff0c;可以使用继承WaitUnit的组件方式进行扩展。下面是具体的操作步骤。 1&#xff1a;等待组件扩展。 经过查找&#xff0c;Bol…

K8S应用笔记 —— 部署Dolphinscheduler及简单应用(二)告警通知

一、本章目标 演示Dolphinscheduler的告警通知功能&#xff0c;将SQL任务组件查询返回结果集指定为邮件通知内容&#xff08;支持为&#xff1a;表格、附件或表格附件三种模板&#xff09;。 二、 前提条件 已完成Dolphinscheduler部署 K8S集群部署&#xff0c;可参考文章&a…