2023国赛数学建模思路 - 案例:ID3-决策树分类算法

文章目录

  • 0 赛题思路
    • 1 算法介绍
    • 2 FP树表示法
    • 3 构建FP树
    • 4 实现代码
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 算法介绍

FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。

常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。

FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

2 FP树表示法

FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

一颗FP树如下图所示:
  在这里插入图片描述
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。
  在这里插入图片描述

3 构建FP树

现在有如下数据:

在这里插入图片描述

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。
在这里插入图片描述

第二次扫描,构造FP树。

参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

4 实现代码

def loadSimpDat():simpDat = [['r', 'z', 'h', 'j', 'p'],['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],['z'],['r', 'x', 'n', 'o', 's'],['y', 'r', 'x', 'z', 'q', 't', 'p'],['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]return simpDatdef createInitSet(dataSet):retDict = {}for trans in dataSet:fset = frozenset(trans)retDict.setdefault(fset, 0)retDict[fset] += 1return retDictclass treeNode:def __init__(self, nameValue, numOccur, parentNode):self.name = nameValueself.count = numOccurself.nodeLink = Noneself.parent = parentNodeself.children = {}def inc(self, numOccur):self.count += numOccurdef disp(self, ind=1):print('   ' * ind, self.name, ' ', self.count)for child in self.children.values():child.disp(ind + 1)def createTree(dataSet, minSup=1):headerTable = {}#此一次遍历数据集, 记录每个数据项的支持度for trans in dataSet:for item in trans:headerTable[item] = headerTable.get(item, 0) + 1#根据最小支持度过滤lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))for k in lessThanMinsup: del(headerTable[k])freqItemSet = set(headerTable.keys())#如果所有数据都不满足最小支持度,返回None, Noneif len(freqItemSet) == 0:return None, Nonefor k in headerTable:headerTable[k] = [headerTable[k], None]retTree = treeNode('φ', 1, None)#第二次遍历数据集,构建fp-treefor tranSet, count in dataSet.items():#根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度localD = {}for item in tranSet:if item in freqItemSet:localD[item] = headerTable[item][0]if len(localD) > 0:#根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] descorderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]updateTree(orderedItems, retTree, headerTable, count)return retTree, headerTabledef updateTree(items, inTree, headerTable, count):if items[0] in inTree.children:  # check if orderedItems[0] in retTree.childreninTree.children[items[0]].inc(count)  # incrament countelse:  # add items[0] to inTree.childreninTree.children[items[0]] = treeNode(items[0], count, inTree)if headerTable[items[0]][1] == None:  # update header tableheaderTable[items[0]][1] = inTree.children[items[0]]else:updateHeader(headerTable[items[0]][1], inTree.children[items[0]])if len(items) > 1:  # call updateTree() with remaining ordered itemsupdateTree(items[1:], inTree.children[items[0]], headerTable, count)def updateHeader(nodeToTest, targetNode):  # this version does not use recursionwhile (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!nodeToTest = nodeToTest.nodeLinknodeToTest.nodeLink = targetNodesimpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

控制台信息:

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/97127.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

图数据库_Neo4j学习cypher语言_常用函数_关系函数_字符串函数_聚合函数_数据库备份_数据库恢复---Neo4j图数据库工作笔记0008

然后再来看一些常用函数,和字符串函数,这里举个例子,然后其他的 类似 可以看到substring字符串截取函数 可以看到截取成功 聚合函数 这里用了一个count(n) 统计函数,可以看到效果 关系函数,我们用过就是id(r) 可以取出对应的r的id来这样..

【不带权重的TOPSIS模型详解】——数学建模

目录索引 定义&#xff1a;问题引入&#xff1a;不合理之处&#xff1a;进行修改&#xff1a; 指标分类&#xff1a;指标正向化&#xff1a;极小型指标正向化公式&#xff1a;中间型指标正向化公式&#xff1a;区间型指标正向化公式&#xff1a; 标准化处理(消去单位)&#xff…

【应用笔记】使用 CW32 实现电池备份(VBAT)功能

前言 电池备份&#xff08;VBAT&#xff09;功能的实现方法&#xff0c;一般是使用 MCU 自带的 VBAT 引脚&#xff0c;通过在该引脚连接钮扣电池&#xff0c;当系统电源因故掉电时&#xff0c;保持 MCU 内部备份寄存器内容和 RTC 时间信息不会丢失。 本文档介绍了如何基于 C…

PHP8的正则表达式-PHP8知识详解

在网页程序的时候&#xff0c;经常会有查找符合某些复杂规则的字符串的需求。正则表达式就是描述这些规则的工具。 正则表达式是把文本或者字符串按照一定的规范或模型表示的方法&#xff0c;经常用于文本的匹配操作。 例如&#xff1a;我们在填写手机号码的时候&#xff0c;…

java-JVM 类加载机制

JVM 类加载机制 JVM 类加载机制分为五个部分&#xff1a;加载&#xff0c;验证&#xff0c;准备&#xff0c;解析&#xff0c;初始化&#xff0c;下面我们就分别来看一下这五个过程。 1.1. 加载 加载是类加载过程中的一个阶段&#xff0c;这个阶段会在内存中生成一个代表这…

windows vscode使用opencv

1.windows vscode使用opencv 参考&#xff1a;https://blog.csdn.net/zhaiax672/article/details/88971248 https://zhuanlan.zhihu.com/p/402378383 https://blog.csdn.net/weixin_39488566/article/details/121297536 g -g .\hello_opencv.cpp -stdc14 -I E:\C-software\…

前端 -- 基础 网页、HTML、 WEB标准 扫盲详解

什么是网页 : 网页是构成网站的基本元素&#xff0c;它通常由 图片、链接、文字、声音、视频等元素组成。 通常我们看到的网页 &#xff0c;常见以 .html 或 .htm 后缀结尾的文件&#xff0c; 因此俗称 HTML 文件 什么是 HTML : HTML 指的是 超文本标记语言&#xff0c…

java面试基础 -- 普通类 抽象类 接口

目录 抽象类语法 抽象类特性 普通类 & 抽象类 抽象类 & 接口 什么是接口 语法 接口方法 变量 接口特性 抽象类&接口的区别 抽象类语法 在Java中&#xff0c;一个类如果被 abstract 修饰称为抽象类&#xff0c;抽象类中被 abstract 修饰的方法称为抽象…

Android 场景Scene的使用

Scene 翻译过来是场景&#xff0c;开发者提供起始布局和结束布局&#xff0c;就可以实现布局之间的过渡动画。 具体可参考 使用过渡为布局变化添加动画效果 大白话&#xff0c;在 Activity 的各个页面之间切换&#xff0c;会带有过渡动画。 打个比方&#xff0c;使用起来类似…

vscode如何汉化

首先我们到vscode官网下载 链接如下&#xff1a; Visual Studio Code - Code Editing. Redefined 根据自己需要的版本下载就好 下载并且安装完毕之后 运行vscode 然后按快捷键 CTRLSHIFTX 打开安装扩展界面 搜索简体中文 安装就可以了 谢谢大家观看

Hadoop小结(上)

最近在学大模型的分布式训练和存储&#xff0c;自己的分布式相关基础比较薄弱&#xff0c;基于深度学习的一切架构皆来源于传统&#xff0c;我总结了之前大数据的分布式解决方案即Hadoop&#xff1a; Why Hadoop Hadoop 的作用非常简单&#xff0c;就是在多计算机集群环境中营…

【C++11新特性】lambda表达式

文章目录 1. lambda表达式概念2. lambda表达式语法3. lambda表达式应用 1. lambda表达式概念 lambda表达式是一个匿名函数&#xff0c;恰当使用lambda表达式可以让代码变得简洁&#xff0c;并且可以提高代码的可读性。 见见lambda表达式的使用 现在要对若干商品分别按照价格和…

十六、Spring Cloud Sleuth 分布式请求链路追踪

目录 一、概述1、为什么出出现这个技术&#xff1f;需要解决哪些问题2、是什么&#xff1f;3、解决 二、搭建链路监控步骤1、下载运行zipkin2、服务提供者3、服务调用者4、测试 一、概述 1、为什么出出现这个技术&#xff1f;需要解决哪些问题 2、是什么&#xff1f; 官网&am…

Linux0.11内核源码解析-truncate.c

truncate文件只要实现释放指定i节点在设备上占用的所有逻辑块&#xff0c;包括直接块、一次间接块、二次间接块。从而将文件节点对应的文件长度截为0&#xff0c;并释放占用的设备空间。 索引节点的逻辑块连接方式 释放一次间接块 static void free_ind(int dev,int block) {…

Windows10上VS2022单步调试FFmpeg 4.2源码

之前在 https://blog.csdn.net/fengbingchun/article/details/103735560 介绍过通过VS2017单步调试FFmpeg源码的方法&#xff0c;这里在Windows10上通过VS2022单步调试FFmpeg 4.2的方法&#xff1a;基于GitHub上ShiftMediaProject/FFmpeg项目&#xff0c;下面对编译过程进行说明…

【mysql】—— 表的增删改查

目录 序言 &#xff08;一&#xff09;Create操作 1、单行数据 全列插入 2、多行数据 指定列插入 3、插入否则更新 4、直接替换 &#xff08;二&#xff09;Retrieve操作 1、SELECT 列 1️⃣全列查询 2️⃣指定列查询 3️⃣查询字段为表达式 4️⃣为查询结果指定…

snpEff变异注释的一点感想

snpEff变异注释整成人生思考 1.介绍2.安装过程以及构建物种参考数据库3.坑货来了4.结果文件判读5.小tips 1.介绍 &nbsp SnpEff&#xff08;Snp Effect&#xff09;是一个用于预测基因组变异&#xff08;例如单核苷酸变异、插入、缺失等&#xff09;对基因功能的影响的生物…

aardio简单网站css或js下载练习

import win.ui; /*DSG{{*/ var winform win.form(text"下载网站css或js";right664;bottom290;maxfalse) winform.add( buttonClose{cls"button";text"退出";left348;top204;right498;bottom262;color14120960;fontLOGFONT(h-14);note" &qu…

如何使用Redis实现附近商家查询

导读 在日常生活中&#xff0c;我们经常能看见查询附近商家的功能。 常见的场景有&#xff0c;比如你在点外卖的时候&#xff0c;就可能需要按照距离查询附近几百米或者几公里的商家。 本文将介绍如何使用Redis实现按照距离查询附近商户的功能&#xff0c;并以SpringBoot项目…

时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测

时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测 目录 时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测预测效果基本介绍模型描述程序设计学习总结参考资料 预测效果 基本介绍 时序预测 | MATLAB实现WOA-…