《论文阅读18》 SSD: Single Shot MultiBox Detector

   一、论文

  • 研究领域: 2D目标检测
  • 论文:SSD: Single Shot MultiBox Detector
  • ECCV 2016

  • 数据集

  • 论文链接
  • 论文github

二、论文概要

SSD网络是作者Wei LiuECCV 2016上发表的论文。对于输入尺寸300x300的网络 使用Nvidia Titan XVOC 2007测试集上达到74.3%mAP以及59FPS对于512x512  的网络,达到了76.9%mAP超越当时最强的Faster RCNN(73.2%mAP)

三、论文详述

Faster RCNN存在的问题:对小目标检测效果很差;模型大,检测速度较慢。

Backbone使用的是VGG-16; 在不同的卷积层进行预测

SSD是One-stage的一个代表

"Backbone" 是在深度学习中常用的一个术语,特别是在卷积神经网络(CNN)中。它指的是网络架构中用于提取特征的主要部分,通常是由多个卷积层和池化层构成的层次结构。

  • 在卷积神经网络中,不同的层级会逐步从原始输入数据中提取越来越高级别的特征。
  • Backbone就是负责这个特征提取的部分,它的输出可以被用于各种任务,例如分类、检测、分割等。

在图像处理任务中,一个经典的例子是在图像分类任务中使用的卷积神经网络(如VGG、ResNet、Inception等)。这些网络通常包含多个卷积层和池化层,构成了整个网络的主干部分,即Backbone。后续的全连接层或其他特定任务的层级则可以根据需要在Backbone之后添加。

总之,"Backbone" 是指在深度学习网络中负责从原始输入数据中提取特征的主要部分,通常由卷积层、池化层等组成。它对于构建有效的深度学习模型以及在各种计算机视觉任务中取得良好效果非常重要。

"one-stage" 和 "two-stage" 是用来描述目标检测算法中的两种不同的框架或方法。这两种方法针对物体检测问题采用了不同的策略。

1. **One-Stage 检测器**:
   - "One-stage" 指的是在单个阶段内直接预测目标的边界框和类别。
   - 这类算法通常更简单,速度较快,因为在一个网络中同时完成了定位和分类任务。
   - 一些典型的 "one-stage" 检测器包括 YOLO(You Only Look Once)和 SSD(Single Shot MultiBox Detector)。

2. **Two-Stage 检测器**:
   - "Two-stage" 指的是目标检测分为两个阶段:生成候选框(region proposals)和对这些候选框进行分类和定位。
   - 首先在第一个阶段生成一组可能包含目标的候选框,然后在第二个阶段对这些候选框进行进一步的分类和边界框调整。
   - 这类算法通常在准确性上表现较好,但可能相对复杂且计算成本较高。
   - 一个典型的 "two-stage" 检测器是 Faster R-CNN。

选择使用哪种方法取决于具体的应用需求,速度要求以及模型的准确性。"One-stage" 检测器适用于实时性要求较高的应用,而 "two-stage" 检测器在对于准确性有更高要求的场景中表现更好。近年来,许多研究工作致力于改进这两种方法,以在速度和准确性之间取得更好的平衡。

xml标注(记录左上角和右下角坐标):

 

 

COCO和YOLOv5标注(记录的是中心点,w, h归一化的坐标)

 

四、论文实践

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/98561.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

通过css设置filter 属性,使整个页面呈现灰度效果,让整个网页变灰

通过css设置filter 属性设置页面整体置灰 效果图: 通过设置 filter 属性为 grayscale(100%)&#xff0c;页面中的所有元素都会被应用灰色滤镜效果&#xff0c;使整个页面呈现灰度效果。 <style type"text/css"> html { filter: grayscale(100%); -webkit-f…

【C语言】什么是结构体内存对齐?结构体的大小怎么计算?

目录 1.结构体内存对齐 对偏移量的理解&#xff1a;​ 2.结构体的大小计算 2.1结构体中只有普通的数据类型的大小计算 2.2 结构体中有嵌套的结构体的大小计算 3.修改默认对齐数 4.为什么存在内存对齐? 这篇文章主要介绍结构体内存对齐和如何计算大小。 在学习结构体内存…

axios详解

目录 一、axios 的理解和使用1.1 axios 是什么?1.2 axios 特点1.3 axios 常用语法1.4 axios基本使用1.5 axios.request()使用1.6 axios默认配置1.7 axios创建实例对象1.8 拦截器1.9 取消请求 二、axios 运行的整体流程三、如何取消未完成的请求 一、axios 的理解和使用 1.1 a…

【ElasticSearch】一键安装ElasticSearch与Kibana以及解决遇到的问题

目录 一、安装ES 二、安装Kibana 三、遇到的问题 一、安装ES 按顺序复制即可 docker network create es-net # 创建网络 docker pull images:7.12.1 # 拉取镜像 mkdir -p /root/es/data # 创建数据卷 mkdir -p /root/es/plugins # 创建数据卷 chmod 777 /root/es/** # 设置权…

1、Spring_IOC

IOC 1.概述 IOC&#xff1a;Inversion of Control 控制反转&#xff0c;可以让容器负责对象的创建以及销毁操作&#xff0c;对象在容器中叫 bean 2.回顾问题 问题&#xff1a;写了太多与业务无关的代码 耦合度非常高&#xff0c;写了很多和业务无关的代码不利于项目的升级迭…

Java 项目日志实例:Log4j2

点击下方关注我&#xff0c;然后右上角点击...“设为星标”&#xff0c;就能第一时间收到更新推送啦~~~ Apache Log4j 2 是对 Log4j 的升级&#xff0c;与其前身 Log4j 1.x 相比有了显着的改进&#xff0c;并提供了许多 Logback 可用的改进&#xff0c;同时支持 JCL 以及 SLF4J…

Linux网络服务之iptables防火墙工具

I P T A B L E S 一、防火墙简介1.1 netfilter1.2 firewalld和iptables 二、iptables工具简述2.1 定义2.2 三种报文流向2.3 iptables的表、链结构&#xff08;非常重要&#xff09;2.3.1 "四表" ----- 规则表2.3.2 "五链" ----- 规则链 三、iptables配置3.…

Vscode详细安装教程

Vscode官网下载 官网地址&#xff1a;Download Visual Studio Code - Mac, Linux, Windows 通过链接可以直接跳转到下面的页面当中&#xff0c;支持的版本有Windows、Linux、Mac&#xff0c;可以选择适配自己电脑的版本&#xff0c;一般来说应该是Windows x64的。不要直接点W…

clion软件ide的安装和环境配置@ubuntu

1.官网&#xff1a; Download CLion 2.安装Clion 直接在官网下载并安装即可&#xff0c;过程很简单 https://www.jetbrains.com/clion/ https://www.jetbrains.com/clion/download/#sectionlinux 3.激活码 4.配置Clion 安装gcc、g、make Ubuntu中用到的编译工具是gcc©…

无涯教程-PHP - 预定义变量

PHP为它运行的脚本提供了预定义变量数组&#xff0c;其中包含来自Web服务器&#xff0c;环境和用户输入的变量。这些新数组称为超全局变量- PHP超全局变量 Sr.NoVariable & Description1 $GLOBALS 全局变量数组。 2 $_SERVER 存放提交过来的web路径、域名、来源、IP及各…

【小沐学NLP】Python进行统计假设检验

文章目录 1、简介1.1 假设检验的定义1.2 假设检验的类型1.3 假设检验的基本步骤 2、测试数据2.1 sklearn2.2 seaborn 3、正态分布检验3.1 直方图判断3.2 KS检验&#xff08;scipy.stats.kstest&#xff09;3.3 Shapiro-Wilk test&#xff08;scipy.stats.shapiro&#xff09;3.…

基于知识蒸馏的两阶段去雨、雪、雾算法调试记录

前言 该项目的介绍可以参考博主这篇博文&#xff1a;基于知识蒸馏的去雪、去雾、去雨算法 调试过程 该项目中inference.py可以直接使用&#xff0c;只要将student的权重文件放入即可&#xff0c;博主实验过其去噪后的结果&#xff0c;貌似是变清晰了一点。但train时的meta里的…

AMBA总线协议(3)——AHB(一)

目录 一、前言 二、什么是AHB总线 1、概述 2、一个典型的基于AHB总线的微处理器架构 3、基本的 AHB 传送特性 三、AMBA AHB总线互联 四、小结 一、前言 在之前的文章中我们初步的了解了一下AMBA总线中AHB,APB,AXI的信号线及其功能&#xff0c;从本文开始我们…

Unity VR:XR Interaction Toolkit 输入系统(Input System):获取手柄的输入

文章目录 &#x1f4d5;教程说明&#x1f4d5;Input System 和 XR Input Subsystem&#xff08;推荐 Input System&#xff09;&#x1f4d5;Input Action Asset⭐Actions Maps⭐Actions⭐Action Properties&#x1f50d;Action Type (Value, Button, Pass through) ⭐Binding …

Python学习笔记_基础篇(七)_常用模块

模块&#xff0c;用一砣代码实现了某个功能的代码集合。 类似于函数式编程和面向过程编程&#xff0c;函数式编程则完成一个功能&#xff0c;其他代码用来调用即可&#xff0c;提供了代码的重用性和代码间的耦合。而对于一个复杂的功能来&#xff0c;可能需要多个函数才能完成…

华为OD机试关于无输入截止条件的ACM输入逻辑

无输入截止条件的ACM输入 华为OD机试题中有一些题目是没有输入截止条件的,比如 华为OD机试 - 数字游戏(Java & JS & Python)_伏城之外的博客-CSDN博客 从输入描述来看,每组有两行输入,但是并没有告诉我们具体有几组? 那么输入该如何截止呢? 此时,有两种输入…

【旅游度假】Axure酒店在线预订APP原型图 旅游度假子模块原型模板

作品概况 页面数量&#xff1a;共 10 页 兼容软件&#xff1a;Axure RP 9/10&#xff0c;不支持低版本 应用领域&#xff1a;旅游度假&#xff0c;生活服务 作品申明&#xff1a;页面内容仅用于功能演示&#xff0c;无实际功能 作品特色 本作品为「酒店在线预订」的移动端…

Qt6之如何为QDialog添加最大化和最小化按钮

在QDialog构造函数中添加以下几行代码&#xff1a; // 设置窗体最大化和最小化Qt::WindowFlags windowFlag Qt::Dialog;windowFlag | Qt::WindowMinimizeButtonHint;windowFlag | Qt::WindowMaximizeButtonHint;windowFlag …

三、Kafka生产者

目录 3.1 生产者消息发送流程3.1.1 发送原理 3.2 异步发送 API3.3 同步发送数据3.4 生产者分区3.4.1 kafka分区的好处3.4.2 生产者发送消息的分区策略3.4.3 自定义分区器 3.5 生产者如何提高吞吐量3.6 数据可靠性 3.1 生产者消息发送流程 3.1.1 发送原理 3.2 异步发送 API 3…