【高光谱图像的去噪算法】通过全变异最小化对受激拉曼光谱图像进行去噪研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章


💥1 概述

文献来源:

 摘要:

高速相干拉曼散射成像通过可视化目标分子或细胞内细胞器的时空动力学,为揭示细胞机制开辟了一条新途径。通过以MHz调制频率从激光器中提取信号,电流激发拉曼散射(SRS)显微镜已经达到了散粒噪声限制的检测灵敏度。SRS显微镜中基于激光的本振不仅可以产生高水平的信号,还可以产生较大的散粒噪声,从而降低图像质量和光谱保真度。在这里,我们展示了一种去噪算法,该算法通过总变异最小化来消除空间和光谱域中的噪声。对于稀释的二甲基亚砜溶液,SRS光谱图像的信噪比提高了57倍,对于生物组织,SRS光谱图像的信噪比提高了15倍。最初埋藏在噪声中的目标分子的弱拉曼峰被解开。将去噪算法与多变量曲线分辨率相结合,可以区分秀丽隐杆线虫中富含蛋白质的细胞器的脂肪储存。总之,我们的方法在没有帧平均的情况下显着提高了检测灵敏度,这对于体内光谱成像非常有用。

关键词:

成像处理 无标记显微镜 非线性显微镜 拉曼光谱

原文摘要:

High-speed coherent Raman scattering imaging is opening a new avenue to unveiling the cellular machinery by visualizing the spatio-temporal dynamics of target molecules or intracellular organelles. By extracting signals from the laser at MHz modulation frequency, current stimulated Raman scattering (SRS) microscopy has reached shot noise limited detection sensitivity. The laser-based local oscillator in SRS microscopy not only generates high levels of signal, but also delivers a large shot noise which degrades image quality and spectral fidelity. Here, we demonstrate a denoising algorithm that removes the noise in both spatial and spectral domains by total variation minimization. The signal-to-noise ratio of SRS spectroscopic images was improved by up to 57 times for diluted dimethyl sulfoxide solutions and by 15 times for biological tissues. Weak Raman peaks of target molecules originally buried in the noise were unraveled. Coupling the denoising algorithm with multivariate curve resolution allowed discrimination of fat stores from protein-rich organelles in C. elegans . Together, our method significantly improved detection sensitivity without frame averaging, which can be useful for in vivo spectroscopic imaging.

关键词:

Imaging processing Label-free microscopy Non-linear microscopy Raman spectroscopy

📚2 运行结果

 主函数代码:

clear all
close all
clc

addpath(genpath('./spectral_tv/'));

sel_exp     = 2;  % select an experiment (1 or 2)

% Set the number of rows, columns and frames.
M           = 128;
N           = 128;
K           = 50;

% Load a hyperspectral image (DMSO100%)
file_name   = '../data/DMSO100%.tif';
hyper_true  = read_hyperdata(file_name, M, N, K);
[rows, cols, frames] = size(hyper_true);

% Add noise in the hyperspectral image
if sel_exp==1
    tmp        = read_hyperdata('../data/DMSO10%.tif', M, N, K);
    sigma_true = estimate_noise_level(tmp);
elseif sel_exp==2
    sigma_true = 0.005:0.005:(0.005*frames);
end
hyper_noisy = zeros(rows, cols, frames);
for i=1:frames
    hyper_noisy(:,:,i) = hyper_true(:,:,i) + sigma_true(i)*randn(rows, cols);
end


% Spectral Total Variation
opts.beta   = [1 1 0.1];
runtime     = tic;
out_stv     = spectral_tv(hyper_noisy, opts);
runtime_stv = toc(runtime);
sigma_est   = out_stv.sigma;
psnr_stv    = psnr(hyper_true, out_stv.f);


% Original Total Variation
mu          = 1;
opts.w      = mean(out_stv.w(:));
opts.beta   = [1 1 0.1];
runtime     = tic;
out_tv      = deconvtvl2(hyper_noisy, 1, mu, opts);
runtime_tv  = toc(runtime);
psnr_tv     = psnr(hyper_true, out_tv.f);


% Print PSNRs between true and denoised images.
fprintf('Method: spectral tv, \t psnr: %6.4f, \t runtime: %6.4f\n', psnr_stv, runtime_stv);
fprintf('Method: original tv, \t psnr: %6.4f, \t runtime: %6.4f\n', psnr_tv, runtime_tv);

% Plot the true and estimeated noise level.
if sel_exp==1 || sel_exp==2
    figure;
    plot(sigma_true, 'LineWidth', 2, 'Color', 'g');
    hold on;
    plot(sigma_est, 'LineWidth', 2, 'Color', 'r');
    hold off;
    xlabel('frame');
    ylabel('noise standard deviation');
    legend('True', 'Estimated', 'Location', 'best');
end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1] Chien-Sheng Liao, Joon Hee Choi, Delong Zhang, Stanley H. Chan and Ji-Xin Cheng, "Denoising Stimulated Raman Spectroscopic Images by Total Variation Minimization," Journal of Physical Chemistry C, Jul. 2015.

🌈4 Matlab代码、数据、文章

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/99402.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32--ADC模数转换

文章目录 ADC简介逐次逼近型ADCADC框图转换模式数据对齐转换时间校准ADC基本结构ADC单通道工程代码: ADC简介 STM32的ADC(Analog-Digital Converter)模拟-数字转换器,是一种逐次逼近型模拟数字转换器,可以将引脚上连续…

Docker容器:docker基础概述、安装、网络及资源控制

文章目录 一.docker容器概述1.什么是容器2. docker与虚拟机的区别2.1 docker虚拟化产品有哪些及其对比2.2 Docker与虚拟机的区别 3.Docker容器的使用场景4.Docker容器的优点5.Docker 的底层运行原理6.namespace的六项隔离7.Docker核心概念 二.Docker安装 及管理1.安装 Docker1.…

百华劳保|听厂家聊聊如何检测防水劳保鞋?

说起防水劳保鞋大家可能并不陌生,在有积水或水利工程这些工作场景中使用,是防止水渗透鞋子的安全防护鞋。许多企业会为员工发放防水劳保鞋,在采购时一般都需要进行防水测试,提供相对应的检测报告。今天百华小编与大家聊聊都是如何…

vue3+ts-tsconfig.json报错Option ‘importsNotUsedAsValues’

vue3ts-tsconfig.json报错Option ‘importsNotUsedAsValues’ is deprecated and will stop functioning in TypeScript 5.5. Specify compilerOption ‘“ignoreDeprecations”: “5.0”’ to silence this error. Use ‘verbatimModuleSyntax’ instead 自我记录 翻译 选项…

OpenGL —— 1、Vs2017搭建glad、glfw环境,并附代码测试

GLFW 简介           GLFW是一个开源的多平台库,用于OpenGL,OpenGL ES和 桌面上的 Vulkan 开发。它提供了一个简单的 API 来创建 窗口、上下文和表面,接收输入和事件。 GLFW是用C语言编写的,支持Windows,mac…

音视频FAQ(三):音画不同步

摘要 本文介绍了音画不同步问题的五个因素:编码和封装阶段、网络传输阶段、播放器中的处理阶段、源内容产生的问题以及转码和编辑。针对这些因素,提出了相应的解决方案,如使用标准化工具、选择强大的传输协议、自适应缓冲等。此外&#xff0…

SpringCloud Gateway:status: 503 error: Service Unavailable

使用SpringCloud Gateway路由请求时,出现如下错误 yml配置如下: 可能的一种原因是:yml配置了gateway.discovery.locator.enabledtrue,此时gateway会使用负载均衡模式路由请求,但是SpringCloud Alibaba删除了Ribbon的…

深度学习入门-3-计算机视觉-卷积神经网络

一、计算机视觉 1.概述 计算机视觉作为一门让机器学会如何去“看”的学科,具体的说,就是让机器去识别摄像机拍摄的图片或视频中的物体,检测出物体所在的位置,并对目标物体进行跟踪,从而理解并描述出图片或视频里的场…

el-table 实现动态表头 静态内容 根据数据显示动态输入框

直接放代码了 <el-table:data"form.tableDataA"borderstripestyle"width: 100%; margin-top: 20px"><el-table-columnv-for"(category, categoryIndex) in form.tableDataA":key"categoryIndex":label"category.name&qu…

SHELL 基础 显示字符颜色, 修改历史命令,Linux里的命令 执行顺序

echo 打印命令 &#xff1a; 显示字符串 &#xff1a; [rootserver ~]# echo this is SHELL language this is SHELL language [rootserver ~]# echo this is SHELL language this is SHELL language [rootserver ~]# echo "this is SHELL language" this is SH…

Curson 编辑器

Curson 汉化与vacode一样 Curson 自带chat功能 1、快捷键ctrlk(代码中编辑) 2、快捷键ctrll 右侧打开窗口

MySQL- sql语句基础

文章目录 1.select后对表进行修改&#xff08;delete&#xff09;2.函数GROUP_CONCAT()3.使用正则表达式3.DATE_FORMAT()4.count() 加条件关于GROUP BY 使用可能忽悠而导致查询结果错误的点 1.select后对表进行修改&#xff08;delete&#xff09; 报错&#xff1a;You can’t…

前端学习记录~2023.8.3~JavaScript重难点实例精讲~第5章 DOM与事件

第 5 章 DOM与事件 前言5.1 DOM选择器5.1.1 传统原生JavaScript选择器&#xff08;1&#xff09;通过id定位&#xff08;2&#xff09;通过class定位&#xff08;3&#xff09;通过name属性定位&#xff08;4&#xff09;通过标签名定位 5.1.2 新型的querySelector选择器和quer…

【论文阅读】 Model Sparsity Can Simplify Machine Unlearning

Model Sparsity Can Simplify Machine Unlearning 背景主要内容Contribution Ⅰ&#xff1a;对Machine Unlearning的一个全面的理解Contribution Ⅱ&#xff1a;说明model sparsity对Machine Unlearning的好处Pruning方法的选择sparse-aware的unlearning framework Experiments…

AI 绘画Stable Diffusion 研究(十一)sd图生图功能详解-美女换装

免责声明: 本案例所用安装包免费提供&#xff0c;无任何盈利目的。 大家好&#xff0c;我是风雨无阻。 为了让大家更直观的了解图生图功能&#xff0c;明白图生图功能到底是干嘛的&#xff0c;能做什么事情&#xff1f;今天我们继续介绍图生图的实用案例-美女换装的制作。 对于…

实验一 ubuntu 网络环境配置

ubuntu 网络环境配置 【实验目的】 掌握 ubuntu 下网络配置的基本方法&#xff0c;能够通过有线网络连通 ubuntu 和开发板 【实验环境】 ubuntu 14.04 发行版FS4412 实验平台 【注意事项】 实验步骤中以“$”开头的命令表示在 ubuntu 环境下执行&#xff0c;以“#”开头的…

Android 命令行如何运行 JAR 文件

​ 最近有位老哥问了一个问题&#xff0c;说如果将java的jar文件在Android中执行&#xff1f;这个其实很简单的一个问题&#xff0c;直接写个App放里面不就可以了么&#xff1f;但是人家说没有App&#xff0c;直接使用命令行去运行。说明这个需求的时候&#xff0c;把我给整懵了…

无需公网IP——搭建web站点

文章目录 概述使用 Raspberry Pi Imager 安装 Raspberry Pi OS设置 Apache Web 服务器测试 web 站点安装静态样例站点将web站点发布到公网安装 Cpolar内网穿透cpolar进行token认证生成cpolar随机域名网址生成cpolar二级子域名将参数保存到cpolar配置文件中测试修改后配置文件配…

python控制obs实现无缝切换场景!obs-websocket-py

前言 最近一直在研究孪生数字人wav2lip。目前成果可直接输入高清嘴型&#xff0c;2070显卡1分钟音频2.6分钟输出。在直播逻辑上可以做到1比1.3这样&#xff0c;所以现在开始研究直播。在逻辑上涉及到了无缝切换&#xff0c;看到csdn上有一篇文章还要vip解锁。。。那自己研究吧…

AMBA总线协议(4)——AHB(二)

目录 一、前言 二、AHB操作概述 三、AHB 基本传输 1、简单传输 2、带有等待的传输 3、多重传输 四、AHB传输类型 五、小结 一、前言 在之前的文章中对于AMBA AHB做了一个简单的介绍&#xff0c;AHB 主要用于高性能模块(如 CPU、DMA 和 DSP 等)之间的连接&#x…