Transformer+vit原理分析

目录

一、Transformer的核心思想

1. 自注意力机制(Self-Attention)

2. 多头注意力(Multi-Head Attention)

二、Transformer的架构

1. 整体结构

2. 编码器层(Encoder Layer)

3. 解码器层(Decoder Layer)

三、关键技术与细节

1. 位置编码(Positional Encoding)

2. 掩码机制(Masking)

3. 前馈神经网络(FFN)

四、训练与优化

1. 损失函数

2. 优化技巧

五、Transformer的应用与变体

1. 经典应用

2. 变体模型

六、Transformer的优势与局限

1. 优势

2. 局限

七、vision transformer

1.Vision Transformer的核心思想

2.ViT架构的关键组件

(1) 图像分块与嵌入(Patch Embedding)

(2) 位置编码(Positional Encoding)

(3) Transformer Encoder

(4) 分类头(Classification Head)

3. 数据处理与训练流程

4. MindSpore实现特点

5. ViT与传统CNN的对比

6.关键代码片段(简化版)


Transformer 模型是2017年由Google提出的一种革命性的深度学习架构(但不是一种AI框架,区别于Tensorflow,可以理解为一种算法),主要用于序列到序列(Seq2Seq)任务(如机器翻译、文本生成等)。它的核心创新在于完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而依赖自注意力机制(Self-Attention)捕捉序列中元素之间的全局依赖关系。Transformer通过自注意力机制彻底改变了序列建模方式,成为现代NLP的基石。其设计启发了BERT、GPT等划时代模型,并扩展到了计算机视觉、语音处理等领域。

一、Transformer的核心思想

1. 自注意力机制(Self-Attention)
  • 目标:为序列中的每个位置(如单词)分配不同的权重,表示该位置对其他位置的依赖程度。
  • 输入:三个向量(Query, Key, Value),均来自同一输入序列的线性变换。
  • 计算步骤

1. 相似度计算:通过Query和Key的点积计算每对位置之间的相关性。

2. 缩放(Scaling):除以根号下维度(),防止点积值过大导致梯度消失。

3. Softmax归一化:得到权重矩阵(注意力分数)。

4. 加权求和:用权重矩阵对Value向量加权求和,得到最终输出。

公式

2. 多头注意力(Multi-Head Attention)
  • 动机:单次注意力可能只关注局部信息,多头机制允许模型同时关注不同子空间的信息。
  • 实现:将Q、K、V分别拆分到多个头(如8个头),每个头独立计算注意力,最后拼接结果并通过线性层融合。

二、Transformer的架构

1. 整体结构
  • 编码器(Encoder):由N个相同层堆叠而成(原论文N=6)。

解码器(Decoder):同样由N个层堆叠,每个层比编码器多一个交叉注意力(Cross-Attention)模块。

2. 编码器层(Encoder Layer)

每层包含两个子模块:

1. 多头自注意力(Multi-Head Self-Attention):处理输入序列的内部依赖。

2. 前馈神经网络(Feed-Forward Network, FFN):两层全连接层(中间用ReLU激活)。

残差连接(Residual Connection)层归一化(Layer Normalization)应用于每个子模块后。

3. 解码器层(Decoder Layer)

每层包含三个子模块:

1. 掩码多头自注意力(Masked Multi-Head Self-Attention):防止解码时看到未来信息。

2. 交叉注意力(Cross-Attention):将解码器的Query与编码器的Key、Value交互。

3. 前馈神经网络(FFN)

  • 同样使用残差连接和层归一化。

三、关键技术与细节

1. 位置编码(Positional Encoding)
  • 问题:Transformer没有RNN/CNN的顺序处理能力,需显式注入位置信息。
  • 方法:使用正弦和余弦函数生成位置编码,与输入向量相加。

2. 掩码机制(Masking)
  • 解码器自注意力掩码:掩盖未来位置,确保预测第t步时只能看到前t-1步的信息。
  • 填充掩码(Padding Mask):忽略无效的填充位置(如补齐序列的0)。

3. 前馈神经网络(FFN)
  • 结构:两层全连接,中间维度扩大(如输入维度512 → 中间2048 → 输出512)。

公式:

四、训练与优化

1. 损失函数
  • 交叉熵损失(Cross-Entropy Loss),用于分类任务(如预测下一个词)。

2. 优化技巧
  • 学习率预热(Learning Rate Warmup):逐步增加学习率,避免初始阶段不稳定。
  • 标签平滑(Label Smoothing):防止模型对标签过于自信,提升泛化能力。

五、Transformer的应用与变体

1. 经典应用
  • 机器翻译(原始论文任务)。
  • BERT:仅用编码器,通过掩码语言模型预训练。
  • GPT系列:仅用解码器,自回归生成文本。

2. 变体模型
  • Vision Transformer(ViT):将图像分块后输入Transformer。
  • Longformer:改进注意力机制,处理长序列。
  • T5:统一的文本到文本框架。

六、Transformer的优势与局限

1. 优势
  • 并行计算效率高(相比RNN)。
  • 长距离依赖捕捉能力强。
  • 灵活适应多种任务(如文本、图像、语音)。

2. 局限
  • 计算复杂度与序列长度平方成正比(O(n²))。
  • 对位置编码的依赖较强,可能影响泛化。

七、vision transformer

1.Vision Transformer的核心思想

ViT将图像处理任务转化为类似自然语言处理(NLP)的序列建模问题,通过Transformer Encoder结构替代传统的卷积神经网络(CNN)。核心思想如下:

  • 图像分块(Patch Embedding):将输入图像分割为固定大小的图像块(如16x16像素),每个块被展平为一个向量,作为Transformer的输入序列。
  • 位置编码(Positional Encoding):由于Transformer本身不具备空间位置感知能力,需为每个图像块添加位置编码,以保留图像的空间信息。
  • 类标记(Class Token):在输入序列前添加一个可学习的类标记(Class Token),用于最终分类任务。

2.ViT架构的关键组件

(1) 图像分块与嵌入(Patch Embedding)
  • 输入图像(如224x224)被划分为多个固定大小的块(如16x16),每个块展平为向量(如16x16x3=768维)。
  • 通过线性投影(`nn.Dense`)将每个块映射到嵌入空间,生成Patch Embeddings
  • 示例操作:
  # MindSpore中的分块与嵌入实现
  self.patch_embedding = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size, has_bias=True)

(2) 位置编码(Positional Encoding)
  • 为每个图像块添加位置编码,编码方式可以是可学习的参数(`nn.Embedding`)或预定义的固定编码。
  • 位置编码与Patch Embeddings相加,形成最终的输入序列。

(3) Transformer Encoder
  • 由多个Multi-Head Self-Attention层和Feed-Forward Network(FFN)堆叠而成。
  • Self-Attention:通过计算序列内各元素间的相关性,捕捉全局依赖关系。
  • Layer NormalizationLN -- 层标准化)残差连接:确保训练稳定性和梯度流动。
  • MindSpore中可以使用`nn.TransformerEncoderLayer`实现单层Transformer。

(4) 分类头(Classification Head)
  • 取类标记对应的输出向量,通过多层感知机(MLP)进行分类。
  self.classifier = nn.Dense(embed_dim, num_classes)

3. 数据处理与训练流程
  • 图像预处理:标准化(如ImageNet均值/方差)、调整大小、分块。
  • 数据增强:随机裁剪、翻转、颜色扰动等(使用MindSpore的`transforms`模块)。
  • 训练优化:使用交叉熵损失函数、AdamW优化器,支持分布式训练和混合精度加速。

4. MindSpore实现特点
  • 动态图模式(PyNative):灵活调试模型结构。
  • 混合精度训练:通过`model.train`的`amp_level`参数加速训练。
  • 分布式训练支持:结合`set_auto_parallel_context`实现多卡并行。

5. ViT与传统CNN的对比

6.关键代码片段(简化版)

VisionTransformer模块实现

import mindspore.nn as nnclass VisionTransformer(nn.Cell):def __init__(self, image_size=224, patch_size=16, num_classes=1000, embed_dim=768, depth=12):super().__init__()
        num_patches = (image_size // patch_size) ** 2
        self.patch_embedding = nn.Conv2d(3, embed_dim, kernel_size=patch_size, stride=patch_size, has_bias=True)
        self.cls_token = Parameter(initializer('normal', (1, 1, embed_dim)))
        self.pos_embed = Parameter(initializer('normal', (1, num_patches + 1, embed_dim)))
        self.transformer = nn.TransformerEncoder(depth, embed_dim, num_heads=12)
        self.classifier = nn.Dense(embed_dim, num_classes)def construct(self, x):
        x = self.patch_embedding(x)  # 分块嵌入
        x = x.flatten(2).transpose(0, 2, 1)
        cls_token = self.cls_token.tile((x.shape[0], 1, 1))
        x = ops.concat((cls_token, x), axis=1)  # 添加类标记
        x += self.pos_embed  # 位置编码
        x = self.transformer(x)  # Transformer编码
        x = x[:, 0]  # 提取类标记输出
        x = self.classifier(x)return x

参考文档Vision Transformer图像分类 — MindSpore master 文档

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/10155.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【MySQL】MySQL客户端连接用 localhost和127.0.0.1的区别

# systemctl status mysqld # ss -tan | grep 3306 # mysql -V localhost与127.0.0.1的区别是什么? 相信有人会说是本地IP,曾有人说,用127.0.0.1比localhost好,可以减少一次解析。 看来这个入门问题还有人不清楚,其实…

爬虫基础(三)Session和Cookie讲解

目录 一、前备知识点 (1)静态网页 (2)动态网页 (3)无状态HTTP 二、Session和Cookie 三、Session 四、Cookie (1)维持过程 (2)结构 正式开始说 Sessi…

使用langchain ollama gradio搭建一个本地基于deepseek r1的RAG问答系统

目录 简介 环境配置 具体实现 安装依赖 定义模型和prompt 加载检索文档 切割 向量存储 创建检索器 实例化 前端搭建 实现效果 小tips 简介 首先介绍一下使用的几个工具,模型和rag的步骤,注:这里只是简单描述一下,不展…

android获取EditText内容,TextWatcher按条件触发

android获取EditText内容,TextWatcher按条件触发 背景:解决方案:效果: 背景: 最近在尝试用原生安卓实现仿element-ui表单校验功能,其中涉及到EditText组件内容的动态校验,初步实现功能后&#…

hive:基本数据类型,关于表和列语法

基本数据类型 Hive 的数据类型分为基本数据类型和复杂数据类型 加粗的是常用数据类型 BOOLEAN出现ture和false外的其他值会变成NULL值 没有number,decimal类似number 如果输入的数据不符合数据类型, 映射时会变成NULL, 但是数据本身并没有被修改 创建表 创建表的本质其实就是在…

《LLM大语言模型+RAG实战+Langchain+ChatGLM-4+Transformer》

文章目录 Langchain的定义Langchain的组成三个核心组件实现整个核心组成部分 为什么要使用LangchainLangchain的底层原理Langchain实战操作LangSmithLangChain调用LLM安装openAI库-国内镜像源代码运行结果小结 使用Langchain的提示模板部署Langchain程序安装langserve代码请求格…

【四川乡镇界面】图层shp格式arcgis数据乡镇名称和编码2020年wgs84无偏移内容测评

本文将详细解析标题和描述中提到的IT知识点,主要涉及GIS(Geographic Information System,地理信息系统)技术,以及与之相关的文件格式和坐标系统。 我们要了解的是"shp"格式,这是一种广泛用于存储…

数据分析系列--⑤RapidMiner进行关联分析(中文数据案例)

一、数据集 二、数据预处理 1.读取数据、拆分、重命名 2.数据预处理 三、关联分析 四、结论 一、数据集 点击下载数据集shopping_basket.xlsx ,这个数据集专门使用中文数据来进行分析. 二、数据预处理 1.读取数据、拆分、重命名 2.数据预处理 三、关联分析 四、结论 Ok,E…

拦截器快速入门及详解

拦截器Interceptor 快速入门 什么是拦截器? 是一种动态拦截方法调用的机制,类似于过滤器。 拦截器是Spring框架中提供的,用来动态拦截控制器方法的执行。 拦截器的作用:拦截请求,在指定方法调用前后,根…

PythonFlask框架

文章目录 处理 Get 请求处理 POST 请求应用 app.route(/tpost, methods[POST]) def testp():json_data request.get_json()if json_data:username json_data.get(username)age json_data.get(age)return jsonify({username: username测试,age: age})从 flask 中导入了 Flask…

134.力扣刷题--加油站--滑动窗口

你知道的,失败总是贯穿人生的始终。 加油站 在一条环路上有 n 个加油站,其中第 i 个加油站有汽油 gas[i] 升。 你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发&#x…

大数据学习之Kafka消息队列、Spark分布式计算框架一

Kafka消息队列 章节一.kafka入门 4.kafka入门_消息队列两种模式 5.kafka入门_架构相关名词 Kafka 入门 _ 架构相关名词 事件 记录了世界或您的业务中 “ 发生了某事 ” 的事实。在文档中 也称为记录或消息。当您向 Kafka 读取或写入数据时,您以事件的 形式执行…

书生大模型实战营5

文章目录 L1——基础岛书生大模型全链路开源开放体系概览书生大模型全链路的数据书生大模型全链路的开源数据处理工具箱预训练 InterEvo微调 XTunerOpenCompass 评测体系部署 LMDeploy智能体 Lagent智能体 MindSearchHuixiangDou L1——基础岛 书生大模型全链路开源开放体系 …

Deepseek技术浅析(二):大语言模型

DeepSeek 作为一家致力于人工智能技术研发的公司,其大语言模型(LLM)在架构创新、参数规模扩展以及训练方法优化等方面都达到了行业领先水平。 一、基于 Transformer 架构的创新 1.1 基础架构:Transformer 的回顾 Transformer 架…

leetcode——对称二叉树(java)

给你一个二叉树的根节点 root , 检查它是否轴对称。 示例 1: 输入:root [1,2,2,3,4,4,3] 输出:true 示例 2: 输入:root [1,2,2,null,3,null,3] 输出:false 解题方法:&#xff08…

Spring Boot 日志:项目的“行车记录仪”

一、什么是Spring Boot日志 (一)日志引入 在正式介绍日志之前,我们先来看看上篇文章中(Spring Boot 配置文件)中的验证码功能的一个代码片段: 这是一段校验用户输入的验证码是否正确的后端代码&#xff0c…

android 圆形弹窗摄像头开发踩坑——源码————未来之窗跨平台操作

一、飘窗刷脸&#xff0c;拍照采用飘窗 刷脸认证安卓接口采用飘窗具有在不干扰用户主要操作的前提下以醒目方式引导用户完成认证&#xff0c;且能灵活定制样式以提升用户体验和认证效率的优点 二、踩坑只有一个扇形 <?xml version"1.0" encoding"utf-8&quo…

DeepSeek的崛起与全球科技市场的震荡

引言 近年来&#xff0c;人工智能&#xff08;AI&#xff09;技术的快速发展不断重塑全球科技格局。 近日&#xff0c;中国初创企业DeepSeek推出了一款据称成本极低且性能强大的AI模型&#xff0c;引发全球市场的剧烈反应。NVIDIA、台积电等半导体和AI科技巨头股价大幅下跌&am…

单机伪分布Hadoop详细配置

目录 1. 引言2. 配置单机Hadoop2.1 下载并解压JDK1.8、Hadoop3.3.62.2 配置环境变量2.3 验证JDK、Hadoop配置 3. 伪分布Hadoop3.1 配置ssh免密码登录3.2 配置伪分布Hadoop3.2.1 修改hadoop-env.sh3.2.2 修改core-site.xml3.2.3 修改hdfs-site.xml3.2.4 修改yarn-site.xml3.2.5 …

大数据相关职位 职业进阶路径

大数据相关职位 & 职业进阶路径 &#x1f4cc; 大数据相关职位 & 职业进阶路径 大数据领域涵盖多个方向&#xff0c;包括数据工程、数据分析、数据治理、数据科学等&#xff0c;每个方向的进阶路径有所不同。以下是大数据相关职位的详细解析及其职业进阶关系。 &#…