acwing1125.牛的旅行
1.先做一边 f l o y d floyd floyd,求出每个点到其他各点的最短距离,得到 d i s t [ ] [ ] dist[][] dist[][]数组。
2.求出 m a x d [ ] maxd[] maxd[]数组,存放每个点到可达点的距离最大值(遍历dist数组可得),遍历 m a x d maxd maxd可得到各个牧场内的最大的直径 r e s 1 res1 res1。
3.连接两个不在同一牧场的点 ( i , j ) (i,j) (i,j),求出新牧场经过路径 d [ i ] [ j ] d[i][j] d[i][j]的所有可能直径中的最小值 r e s 2 = m i n ( d [ i ] [ j ] + m a x d [ i ] + m a x d [ j ] ) res2=min(d[i][j]+maxd[i]+maxd[j]) res2=min(d[i][j]+maxd[i]+maxd[j])
4.最后的答案就是 r e s 1 res1 res1和 r e s 2 res2 res2的最大值。
#include <iostream>
#include <cstring>
#include <cmath>
using namespace std;
typedef pair<int,int> PII;
#define x first
#define y second
const int N = 155;
const int INF = 0x3f3f3f3f;
char g[N][N];
double maxd[N];
PII q[N];
double d[N][N];
int n;
double get_dist(int i, int j)
{double dx = q[i].x - q[j].x, dy = q[i].y - q[j].y;return sqrt(dx * dx + dy * dy);
}
int main()
{cin >> n;for (int i = 1; i <= n; i ++ )cin >> q[i].x >> q[i].y;for (int i = 1; i <= n; i ++ )cin >> g[i];for (int i = 1; i <= n; i ++ )for (int j = 1; j <= n; j ++ ){if (i != j){if (g[i][j - 1] == '0') d[i][j] = INF;else d[i][j] = get_dist(i, j);}}for (int k = 1; k <= n; k ++)for (int i = 1; i <= n; i ++ )for (int j = 1; j <= n; j ++ )d[i][j] = min(d[i][j], d[i][k] + d[k][j]);double res1 = 0;for (int i = 1; i <= n; i ++ )for (int j = 1; j <= n; j ++ )if (d[i][j] < INF) {maxd[i] = max(maxd[i], d[i][j]);res1 = max(res1, d[i][j]);}double res2 = INF;for (int i = 1; i <= n; i ++ )for (int j = 1; j <= n; j ++ ){if (d[i][j] >= INF)res2 = min(res2, get_dist(i, j) + maxd[i] + maxd[j]);}printf("%.6lf", max(res1, res2));return 0;
}
acwing343.排序
给定若干个元素和若干对二元关系且关系具有传递性“通过传递性推导出尽量多的元素之间的
关系”的问题便被称为传递闭包。
本题的主要思想就是考虑枚举到每一组关系时,我们能不能推出所有点对之间的关系,或者说会不会出现矛盾的情况。
我们定义 d [ i ] [ j ] d[i][j] d[i][j]表示 i , j i,j i,j两个点之间时候存在小于关系,使用floyd推出点对之间的关系, d [ i ] [ j ] ∣ = d [ i ] [ k ] & d [ k ] [ j ] d[i][j] |= d[i][k] \& d[k][j] d[i][j]∣=d[i][k]&d[k][j]。
#include <iostream>
#include <cstring>
using namespace std;
const int N = 26;
int g[N][N];
int d[N][N];
bool st[N];
int n, m;
void floyd()
{memcpy(d, g, sizeof d);for (int k = 0; k < n; k ++ )for (int i = 0; i < n; i ++ )for (int j = 0; j < n; j ++ )d[i][j] |= d[i][k] & d[k][j];}
int check()
{for (int i = 0; i < n; i ++ )if (d[i][i]) return 2;for (int i = 0; i < n; i ++ )for (int j = 0; j < i; j ++ )if (!d[i][j] && !d[j][i]) return 0;return 1;
}
char get_min()
{for (int i = 0; i < n; i ++ ){if (st[i]) continue;bool flag = true;for (int j = 0; j < n; j ++ ){if (!st[j] && d[j][i]){flag = false;break;}}if (flag){st[i] = true;return i + 'A';}}
}
int main()
{while (cin >> n >> m, n || m){memset(g, 0, sizeof g);int type = 0, t;for (int i = 1; i <= m; i ++ ){char str[5];cin >> str;int a = str[0] - 'A', b = str[2] - 'A';if (!type){g[a][b] = 1;floyd();type = check();if (type) t = i;}}if (!type) puts("Sorted sequence cannot be determined.");else if (type == 2) printf("Inconsistency found after %d relations.\n", t);else{memset(st, 0, sizeof st);printf("Sorted sequence determined after %d relations: ", t);for (int i = 0; i < n; i ++ ) printf("%c", get_min());printf(".\n");}}return 0;
}
acwing344.观光之旅
我们考虑依次求出最大值为k且包含k的环的长度。
对于一个环 i − k − j − . . . − i i-k-j-...-i i−k−j−...−i来说,环的长度为 d i s t [ i ] [ j ] + w [ i ] [ k ] + w [ k ] [ j ] dist[i][j] +w[i][k]+w[k][j] dist[i][j]+w[i][k]+w[k][j],其中 d i s t [ i ] [ j ] dist[i][j] dist[i][j]为i到j的最短路, w [ i ] [ k ] + w [ k ] [ j ] w[i][k]+w[k][j] w[i][k]+w[k][j]为两条边权之和。我们对floyd算法进行分析:
for (int k = 1; k <= n; k ++){//每次我们循环到这个位置时,已经求得了经过点不大于//k-1的两点间的最短路径,正好对应了上面的dist[i][j],//也正因此我们可以在此处来求最大值为k且包含k的环的长度for (int i = 1; i <= n; i ++ )for (int j = 1; j <= n; j ++ )d[i][j] = min(d[i][j], d[i][k] + d[k][j]);}
#include <iostream>
#include <cstring>
using namespace std;
typedef long long ll;
const int N = 110, M = 10010;
int g[N][N];
int d[N][N];
int pos[N][N];
int path[N];
int n, m;
int cnt;
void get_path(int i, int j)
{int u = pos[i][j];if (u == 0) return ;get_path(i, u);path[cnt ++ ] = u;get_path(u, j);return ;
}
int main()
{cin >> n >> m;memset(g, 0x3f, sizeof g);for (int i = 1; i <= n; i ++ ) g[i][i] = 0;while (m -- ){int a, b, c;cin >> a >> b >> c;g[a][b] = g[b][a] = min(g[a][b], c);}memcpy(d, g, sizeof d);int res = 0x3f3f3f3f; for (int k = 1; k <= n; k ++ ){for (int i = 1; i < k; i ++ ){for (int j = i + 1; j < k; j ++ ){if (res > (ll)d[i][j] + g[i][k] + g[k][j]){res = d[i][j] + g[i][k] + g[k][j];cnt = 1;get_path(i, j);path[cnt ++ ] = j, path[cnt ++ ] = k, path[cnt ++ ] = i;}}}for (int i = 1; i <= n; i ++ ) for (int j = 1; j <= n; j ++ ){if (d[i][j] > d[i][k] + d[k][j]){d[i][j] = d[i][k] + d[k][j];pos[i][j] = k;}}}}if (res == 0x3f3f3f3f) cout << "No solution." << endl;else{for (int i = 1; i < cnt; i ++ )cout << path[i] << " ";}return 0;
}
acwing345.牛站
d [ a + b ] [ i ] [ j ] d[a+b][i][j] d[a+b][i][j]表示经过边数为 a + b a+b a+b时从 i i i到 j j j的最短路径。
d [ a + b ] [ i ] [ j ] = m i n { d [ a ] [ i ] [ k ] + d [ b ] [ k ] [ j ] } d[a+b][i][j]=min\{d[a][i][k]+d[b][k][j]\} d[a+b][i][j]=min{d[a][i][k]+d[b][k][j]}
如果一个一个枚举的话,需要 O ( n 4 ) O(n^4) O(n4),要一个一个往上加边数,从1到2到3…到k再枚举 i , j , k i,j,k i,j,k,时间复杂度太大过不了
往上加的时候,发现可以利用快速幂(二进制)的思想来处理最外层的循环往上加边数的限制,从而将时间复杂度降成 ( n 3 l o g n ) (n^3logn) (n3logn)
把 g g g数组,也就是一开往里读入的图,通过不断地倍增,在需要的时候,也就是 k & 1 = 1 k\&1=1 k&1=1时,把 r e s res res与 g g g数组,进行folyd相加
例如,通过倍增,把 g [ i ] [ j ] g[i][j] g[i][j]更新成了恰好经过a条边的最短路,而此时 r e s [ i ] [ j ] res[i][j] res[i][j]数组更新成了恰好经 b b b条边的最短路,这样把两者放在一块开始更新, r e s [ i ] [ j ] res[i][j] res[i][j]就会更新成了从i到j恰好经过 a + b a+b a+b条边的最短路
在更新前会开个 t e m p temp temp临时数组来存暂时要求的 r e s res res数组,因为是把两个数组旧的 r e s res res和 g g g相加,来更新新 r e s res res数组
不能用更新出来的 r e s res res值,来再更新自己,那样就违背了边数限制,所以先用 t e m p temp temp数组来临时存答案,求完了再把值赋给 r e s res res,从而更新它。
#include <iostream>
#include <cstring>
#include <map>
using namespace std;const int N = 210, M = 110;
int d[N][N];
int res[N][N];
int k, n, m, s, e;
void mul(int a[][N], int b[][N], int c[][N])
{static int temp[N][N];memset(temp, 0x3f, sizeof temp);for (int k = 1; k <= n; k ++ )for (int i = 1; i <= n; i ++ )for (int j = 1; j <= n; j ++ ){temp[i][j] = min(temp[i][j], b[i][k] + c[k][j]);}memcpy(a, temp, sizeof temp);
}
void qmi()
{memset(res, 0x3f,sizeof res);for (int i = 1; i <= n; i ++ ) res[i][i] = 0;while (k){if (k & 1) mul(res, res, d);mul(d, d, d);k >>= 1;}
}
int main()
{cin >> k >> m >> s >> e;map<int, int>ids; memset(d, 0x3f, sizeof d);if (!ids.count(s)) ids[s] = ++ n;if (!ids.count(e)) ids[e] = ++ n;for (int i = 1; i <= m; i ++ ){int a, b, c;cin >> c >> a >> b;if (!ids.count(a)) ids[a] = ++ n;if (!ids.count(b)) ids[b] = ++ n;a = ids[a], b= ids[b];d[a][b] = d[b][a] = min(d[a][b], c);}qmi();cout << res[ids[s]][ids[e]];return 0;
}