全流程R语言Meta分析核心技术应用

Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,最早出现于“循证医学”,现已广泛应用于农林生态,资源环境等方面。R语言拥有完整有效的数据处理、统计分析与保存机制,可以对数据直接进行分析和显示,命令格式简单、结果可读性强,包含众多针对Meta分析软件包,是进行Meta整合分析及评价的有效平台。课程从文献计量分析研究热点变化寻找科学问题R-Meta多手段全流程分析与Meta高级绘图多层次分层嵌套模型构建与Meta回归诊断贝叶斯网络、MCMC参数优化及不确定性分析Meta数据缺失值处理的六种方法与结果可靠性分析Meta加权机器学习与非线性Meta分析等方面讲解,每个专题,每一部分结合多个典型案例实践,深受众多学员好评。

点击查看原文icon-default.png?t=N6B9https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247542347&idx=2&sn=53542950c873477ce13c00cf101a9180&chksm=ce64cca0f91345b69320df320e015a03e1f86ff3f3482b553f329cb1e76bb00181ad87ff5e7e&token=1639767299&lang=zh_CN#rd

图片

 

专题一

Meta分析的选题与检索

1、Meta分析的选题与文献检索

  1. 什么是Meta分析
  2. Meta分析的选题策略
  3. 精确检索策略,如何检索全、检索准
  4. 文献的管理与清洗,如何制定文献纳入排除标准
  5. 文献数据获取技巧,研究课题探索及科学问题的提出
  6. 文献计量分析CiteSpace、VOSViewer、R bibliometrix及研究热点分析

专题二

Meta分析与R语言基础

2Meta分析的常用软件/R语言基础及统计学基础

  1. R语言做Meta分析的优势及其《Nature》、《Science》经典案例应用
  2. R语言基本操作与数据清洗方法
  3. 统计学基础和常用统计量计算(sd\se\CI)、三大检验(T检验、卡方检验和F检验)
  4. R语言Meta分析常用包及相关插件介绍与安装

从自编程计算到调用Meta包(meta、metafor、dmetar、esc、metasens、metamisc、meta4diag、gemtc、robvis、netmeta、brms等),全程分析如何进行meta计算、meta诊断、贝叶斯meta、网状meta、亚组分析、meta回归及作图。

专题三

R语言Meta分析与作图

3R语言Meta效应值计算

  1. R语言Meta分析的流程
  2. 各类meta效应值计算、自编程序和调用函数的对比

连续资料的RR、MD与SMD

分类资料的RR和OR

  1. R语言meta包和metafor包的使用
  2. 如何用R基础包和ggplot2绘制漂亮的森林图

 

专题四

R语言Meta回归分析

4R语言Meta分析与混合效应模型构建

  1. Meta分析的权重计算
  2. Meta分析中的固定效应、随机效应
  3. 如何对Meta模型进行统计检验和构建嵌套模型、分层模型(混合效应)
  4. Meta回归和普通回归、混合效应模型的对比及结果分析
  5. 使用Rbase和ggplot2绘制Meta回归图

 

 

专题五

R语言Meta诊断分析

5R语言Meta诊断进阶

  1. Meta诊断分析(t2、I2、H2、R2、Q、QE、QM等统计量)
  2. 异质性检验及发表偏移、漏斗图、雷达图、发表偏移统计检验
  3. 敏感性分析、留一法、增一法、Gosh图
  4. 风险分析、失安全系数计算
  5. Meta模型比较和模型的可靠性评价
  6. Bootstrap重采样方法评估模型的不确定性
  7. 如何使用多种方法对文献中的SD、样本量等缺失值的处理

 

专题六

R语言Meta分析的不确定性

6R语言Meta分析的不确定性

  1. 网状Meta分析
  2. 贝叶斯理论和蒙特拉罗马尔可夫链MCMC
  3. 如何使用MCMC优化普通回归模型和Meta模型参数
  4. R语言贝叶斯工具Stan、JAGS和brms
  5. 贝叶斯Meta分析及不确定性分析

 

 

专题七

机器学习在Meta分析中的应用

7机器学习在Meta分析中的应用

  1. 机器学习基础以及Meta机器学习的优势
  2. Meta加权随机森林(MetaForest)的使用
  3. 使用Meta机器学习和传统机器学习对文献中的大数据训练与测试
  4. 如何判断Meta机器学习使用随机效应还是固定效应以及超参数的优化
  5. 使用Meta机器学习进行驱动因子分析、偏独立分析PDP

专题八

讨论与答疑

1、练习

2、讨论与答疑

R语言混合效应(多水平层次嵌套)模型技术应用与及混合效应模型贝叶斯

 R语言与作物模型(以DSSAT模型为例)融合应用高级实战技术应用

 最新基于R语言结构方程模型分析与实践技术应用

基于R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析实践技术应用

【高阶版】R语言空间分析、模拟预测与可视化高级应用

如何利用python机器学习解决空间模拟与时间预测问题及经典案例分析实践技术

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/103283.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

单片机(二)使用位移 让灯亮

一:硬件电路 P2 口: P2.0~ P2.7 是这些 I0 口 LED 阳极接 电源 , P20 口 为低电平 可以让 LED灯 亮 二:软件实现部分 两种 ① 通过循环 来展示从左 到右 #include "reg52.h"#define LED_PORT P2 // 定义单片机的P2端…

把握医学营养趋势 健启星加速突围

随着“健康中国”战略的提出,大健康产业上升到国家战略高度,进入高速发展期。市场数据显示,医学营养市场发展势头迅猛,年平均增速超过30%,中国医学营养市场也迎来高速发展。但目前品牌处于高度分散的状态,市…

解决 go mod tidy 加载模块超时

如果go mod tidy 加载模块超时 解决方法 修改GOPROXY: 查看go环境相关信息: go envgo env -w GOPROXYhttps://goproxy.cn

数据结构(4)

树 无论是符号表还是线性表,随着元素的增多,增删查操作耗时增加,为了提高运算效率,需要树。 树是由N(N>1)个有限结点组成一个具有层次关系的集合。 特征: 1.每个结点有零个或多个结点 2.…

在Linux系统中配置代理服务器来加速软件包管理

作为一名专业程序员,我今天要和大家分享一个在Linux系统中配置代理服务器来加速软件包管理的解决方案。如果你经常在Linux上使用软件包管理器(如apt、yum等),但下载速度缓慢,那么本文将给你带来一些操作方法&#xff0…

ChatGPT帮助提升工作效率和质量:完成时间下降40%,质量评分上升 18%

自ChatGPT去年11月发布以来,人们就开始使用它来协助工作,热心的用户利用它帮助撰写各种内容,从宣传材料到沟通话术再到调研报告。 两名MIT经济学研究生近日在《科学》杂志上发表的一项新研究表明,ChatGPT可能有助于减少员工之…

专题-【十字链表】

有向图的十字链表表示法:

CSS实现一个交互感不错的卡片列表

0、需求分析 横向滚动鼠标悬停时突出显示 默认堆叠展示鼠标悬停时,完整展示当前块适当旋出效果 移动端样式优化、磁吸效果美化滚动条 1、涉及的主要知识块 flex 布局css 简单变换过渡 transform、transition 渐变色函数 linear-gradient… 伪类、伪元素 滚动条、…

CSS 实现页面底部加载中与加载完毕效果

效果图 实现代码 <view class"bottom-load-tip"><view class"line-tip"></view><view class"loading-animation" v-if"!lastPage"></view><view>{{ lastPage ? "没有更多了" : "…

Java不用加减乘除做加法(图文详解)

目录 1.题目描述 2.题解 分析 具体实现 1.题目描述 写一个函数&#xff0c;求两个整数之和&#xff0c;要求在函数体内不得使用、-、*、/四则运算符号。 示例 输入&#xff1a;1 2 输出&#xff1a;3 2.题解 分析 不能使用加减乘除四则运算符&#xff0c;那我们只能考虑…

Rancher-RKE-install 部署k8s集群

一、为什么用Rancher-RKE-install 1.CNCF认证的k8s安装程序。 2.有中文文档。 二、安装步骤 1.下载Rancher-Rke的二进制包-下面是项目的地址 GitHub - rancher/rke: Rancher Kubernetes Engine (RKE), an extremely simple, lightning fast Kubernetes distrib…

opencv 案例实战02-停车场车牌识别SVM模型训练及验证

1. 整个识别的流程图&#xff1a; 2. 车牌定位中分割流程图&#xff1a; 三、车牌识别中字符分割流程图&#xff1a; 1.准备数据集 下载车牌相关字符样本用于训练和测试&#xff0c;本文使用14个汉字样本和34个数字跟字母样本&#xff0c;每个字符样本数为40&#xff0c;样本尺…

新能源汽车技术的最新进展和未来趋势

文章目录 电池技术的进步智能驾驶与自动驾驶技术充电基础设施建设新能源汽车共享和智能交通未来趋势展望结论 &#x1f389;欢迎来到AIGC人工智能专栏~探索新能源汽车技术的最新进展和未来趋势 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒&#x1f379;✨博客主页&#xff1a;IT陈寒的博客…

Window Server 与 Windows 系统开关机日志查看方法

目录 Windows/Windows Server 查看日志Windows 系统常用的事件 ID 环境&#xff1a;Windows Server 2019 &#xff08;也适用于 Windows 其他系统&#xff09;。 不同版本的 Windows 图标可能有所不同&#xff0c;但是服务器级 Windows Server 与普通桌面级 Windows 还会有些操…

stm32之12.如何使用printf打印输出

主函数增加这些代码即可实现printf打印输出 需要添加头文件 #include "stdio.h" --------------- 源码 struct __FILE { int handle; /* Add whatever you need here */ }; FILE __stdout; FILE __stdin; int fputc(int c, FILE *f) { /* 发送一个字节 */ …

go rpc

运用go标准库写一个rpc例子 服务端 package mainimport ("fmt""net""net/rpc" )//对象 type Hello struct { } //对象方法 func (h *Hello) HelloWorld(name string, resp *string) error {*resp name "你好"return nil }func mai…

现货白银投资什么的?

也许很多投资者听说过现货白银&#xff0c;但并不知道它投资的是什么&#xff0c;过程中是如何进行买卖的&#xff0c;也不知道如果参与其中&#xff0c;自己需要承担什么风险&#xff0c;最终的收益会如何。对于上述的这些问题本文&#xff0c;将为大家简单地介绍一下。 虽然现…

前端进阶Html+css09----BFC模型

1.什么是BFC模型 全称是&#xff1a;Block formatting context&#xff08;块级格式化上下文&#xff09;&#xff0c;是一个独立的布局环境&#xff0c;不受外界的影响。 2.FC,BFC,IFC 元素在标准流里都属于一个FC&#xff08;Formatting Context&#xff09;。 块级元素的布…

javaweb01-html、css基础

话不多说&#xff0c;先来一张泳装板鸭镇楼 接上一开篇&#xff0c; 首战以web的三大基石开头&#xff08;html、css、js&#xff09;&#xff0c;js内容比较多&#xff0c;下一序章讲解&#xff0c;这一章节主要以html和css为主。 目录 一、初始web前端 二、HTML标签结构 三、…

Elasticsearch 常见的简单查询

查看es中有哪些索引 请求方式&#xff1a;GET 请求地址&#xff1a;http://localhost:9200 /_cat/indices?v 参数&#xff1a;无 结果&#xff1a; 查看索引全部数据 请求方式&#xff1a;GET 请求地址&#xff1a;http://localhost:9200/index-2023-08/_search 参数&a…