数据分享|R语言PCA主成分、lasso、岭回归降维分析近年来各国土地面积变化影响...

全文链接:http://tecdat.cn/?p=31445

机器学习在环境监测领域的应用,着眼于探索全球范围内的环境演化规律,人类与自然生态之间的关系以及环境变化对人类生存的影响点击文末“阅读原文”获取完整代码数据)。

课题着眼于环境科学中的近年来土地面积变化影响的课题,应用机器学习的方法,进行数据处理与分析预测。数据的处理方法以及机器学习本身算法理论的学习和代码实现在各领域具有相同性,之后同学可以在其他感兴趣的领域结合数据进行分析,利用此课题所学知识举一反三。

相关视频

本文获取了近年来全球各国土地面积变化数据查看文末了解数据免费获取方式

outside_default.png

区域或局地尺度的气候变化影响研究需要对气候模式输出或再分析资料进行降尺度以获得更细分辨率的气候资料。

本文通过PCA主成分、lasso、岭回归对数据进行降维分析,既能起到对相关的预报因子限制的作用保证了预测结果的稳定性,又不至于掩盖预报因子的贡献以至于丧失模型预测的准确性。

读取数据

data=read.csv("E:/climate_change_download_0 (1).csv")  data=na.omit(data)  
# data[which(data=="..")]=0  
x=data[,c(7:ncol(data))]  
x[which(x=="..",arr.ind = T)]=0

数据清洗

x=data.frame(x)  
for(j in 1:ncol(x))x[,j]=as.numeric(x[,j])

主成分分析

pca <- x %*% v[,1:2]
scores <- X %*% loadings  
biplot(scores[,1:2], loadings[,1:2], xlab=rownames(scores),

outside_default.png


点击标题查阅往期内容

outside_default.png

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现

outside_default.png

左右滑动查看更多

outside_default.png

01

outside_default.png

02

outside_default.png

03

outside_default.png

04

outside_default.png

发现最优主成分数

outside_default.png

outside_default.png

lasso 模型

对数据进行lasso模型筛选变量

转换数据类型

for(i in 1:ncol(X))X[,i]=as.numeric(X[,i])

找出有强影响的变量

summary(laa)## LARS/LAR  
## Call: lars(x = X, y = Y, type = "lar")  
##    Df    Rss       Cp  
## 0   1 6505.0 2041.608  
## 1   2 6472.4 2000.730  
## 2   3 6411.9 1923.292  
## 3   4 6056.4 1458.310  
## 4   5 6044.3 1444.434  
## 5   6 6010.9 1402.454  
## 6   7 5660.6  944.328  
## 7   8 5594.1  858.944  
## 8   9 5334.2  519.497

outside_default.png

outside_default.png

使用lasso方法排除回归模型中的多重共线性是有必要的。在对lasso模型参数的确定过程中,进行统计降尺度时将df设置为17时,cp值最小,因此我们选择1999-2006年的数据较为合理,既能起到对相关的预报因子限制的作用保证了预测结果的稳定性,又不至于掩盖预报因子的贡献以至于丧失模型预测的准确性。

使用ridge regression回归模型

outside_default.png

plot(lm.rid

outside_default.png

outside_default.png

选择GCV为100,带入岭回归模型的lambda中

outside_default.png

使用岭回归方法排除回归模型中的多重共线性是有必要的。在对岭回归模型参数α的确定过程中,本文认为在使用岭回归模型对地区土地面积进行统计尺度时将GCV设置为100较为合理,当α过小时,正则项起不到作用,回归模型各项系数分散,此时模型如普通最小二乘多元回归模型,出现过拟合现象,预测结果不稳定;当α过大时,模型各项系数收敛到一处,出现欠拟合现象,预测结果不准确;而当α合理确定时,平衡了模型的稳定性和准确性。

数据获取

在公众号后台回复“土地”,可免费获取完整数据。

outside_default.png

本文中分析的数据分享到会员群,扫描下面二维码即可加群!

outside_default.png


outside_default.png

点击文末“阅读原文”

获取全文完整代码数据资料。

本文选自《R语言PCA主成分、lasso、岭回归降维分析全球气候变化对各国土地面积影响》。

点击标题查阅往期内容

基于R语言实现LASSO回归分析

R语言Lasso回归模型变量选择和糖尿病发展预测模型

【视频】Lasso回归、岭回归正则化回归数学原理及R软件实例

群组变量选择、组惩罚group lasso套索模型预测新生儿出生体重风险因素数据和交叉验证、可视化

【视频】Lasso回归、岭回归等正则化回归数学原理及R语言实例

R语言Lasso回归模型变量选择和糖尿病发展预测模型

用LASSO,adaptive LASSO预测通货膨胀时间序列

MATLAB用Lasso回归拟合高维数据和交叉验证

群组变量选择、组惩罚group lasso套索模型预测新生儿出生体重风险因素数据和交叉验证、可视化

高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据

Python高维变量选择:SCAD平滑剪切绝对偏差惩罚、Lasso惩罚函数比较

R使用LASSO回归预测股票收益

广义线性模型glm泊松回归的lasso、弹性网络分类预测学生考试成绩数据和交叉验证

贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据

R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现

R语言高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据(含练习题)

广义线性模型glm泊松回归的lasso、弹性网络分类预测学生考试成绩数据和交叉验证

贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据

R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现

R语言高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据(含练习题)

Python中LARS和Lasso回归之最小角算法Lars分析波士顿住房数据实例

R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析

R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例

Python中的Lasso回归之最小角算法LARS

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现

R语言实现LASSO回归——自己编写LASSO回归算法

r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现

R使用LASSO回归预测股票收益

R语言如何和何时使用glmnet岭回归

R语言中的岭回归、套索回归、主成分回归:线性模型选择和正则化

Python中的ARIMA模型、SARIMA模型和SARIMAX模型对时间序列预测

R语言arima,向量自回归(VAR),周期自回归(PAR)模型分析温度时间序列

【视频】Python和R语言使用指数加权平均(EWMA),ARIMA自回归移动平均模型预测时间序列

Python用ARIMA和SARIMA模型预测销量时间序列数据

outside_default.png

outside_default.png

outside_default.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/105302.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

秒杀系统的业务流程以及优化方案(实现异步秒杀)

先看基本的业务流程 那么我们可以看到整个流程都是一个线程来完成的&#xff0c;这样的话耗时还是很长的&#xff0c;那么可不可以采用多线程去实现呢&#xff1f; 首先我们要思考怎么对业务进行拆分&#xff0c;可以想象一个我们去饭店点餐&#xff0c;会有前台接待&#xff…

Docker构建镜像

Docker根据Dockerfile文件构建镜像 在实际生产中&#xff0c;常常使用Dockerfile构建企业级生产环境镜像,然后再部署在我们的生产环境中&#xff0c;本文将从从零开始介绍Dockerfile如何使用&#xff0c;构建镜像。 Dockerhub官网地址&#xff1a;https://registry.hub.docke…

Pyqt5-开源工具分解功能(配置文件+快捷写入)

开源第五篇,配置文件及参数配置,先来看个图: 上述是自动化电池监测的简图。会根据json文件中的数据从而自动写入数据。 如何自动写入数据 从GIF中可以看到,选中的输入的标签都是QLineEdit,而QLineEdit的写入文本方法是.setText(str),注意这里是写入的文本是text,字符串。…

Docker容器:本地私有仓库、harbor私有仓库部署与管理

文章目录 一.本地私有仓库1.本地私有仓库概述2.搭建本地私有仓库3.容器重启策略简介 二.harbor私有仓库部署与管理1.什么是harbor2.Harbor的特性3、Harbor的构成4.Harbor私有仓库架构及数据流向5.harbor部署及配置&#xff08;192.168.198.11&#xff09;&#xff08;1&#xf…

有哪些前端调试和测试工具? - 易智编译EaseEditing

前端开发调试和测试工具帮助开发人员在开发过程中发现和修复问题&#xff0c;确保网站或应用的稳定性和性能。以下是一些常用的前端调试和测试工具&#xff1a; 调试工具&#xff1a; 浏览器开发者工具&#xff1a; 现代浏览器&#xff08;如Chrome、Firefox、Safari等&#…

几个nlp的小项目(文本分类)

几个nlp的小项目(文本分类) 导入加载数据类、评测类查看数据集精确展示数据测评方法设置参数tokenizer,token化的解释对数据集进行预处理加载预训练模型进行训练设置训练模型的参数一个根据任务名获取,测评方法的函数创建预训练模型开始训练本项目的工作完成了什么任务?导…

资深网络工程师的网络排障全过程,太强了!【附工具下载】

下午好&#xff0c;我的网工朋友 我们知道&#xff0c;交换机是局域网中一种很重要的网络设备&#xff0c;它的工作状态与客户端系统的上网状态息息相关。 可是&#xff0c;在实际工作过程中&#xff0c;交换机的状态很容易受到外界的干扰&#xff0c;那样一来局域网中就会出…

Java单元测试 JUnit 5 快速上手

一、背景 什么是 JUnit 5&#xff1f;首先就得聊下 Java 单元测试框架 JUnit&#xff0c;它与另一个框架 TestNG 占据了 Java领域里单元测试框架的主要市场&#xff0c;其中 JUnit 有着较长的发展历史和不断演进的丰富功能&#xff0c;备受大多数 Java 开发者的青睐。 而说到…

MES管理系统如何实现数据采集和过程控制

随着工业4.0的到来&#xff0c;MES管理系统解决方案已成为企业实现生产过程数字化和智能化的关键工具。MES生产管理系统不仅提供生产计划、调度、质量管理和设备维护等功能&#xff0c;还在数据采集和过程控制方面发挥着重要作用。本文将探讨MES生产管理系统如何实现数据采集和…

【Hello Network】DNS协议 NAT技术 代理服务器

本篇博客简介&#xff1a;介绍DNS协议 NAT技术和代理服务器 网络各协议补充 DNSDNS背景DNS介绍DNS总结域名简介 NAT技术NAT技术背景NAT IP转换过程NAPTNAT技术缺陷NAT和代理服务器 网络协议总结应用层传输层网络层数据链路层 DNS DNS是一整套从域名映射到IP的系统 DNS背景 为…

Unity怎么制作魔法火焰特效?Unity制作魔法火焰特效方法

Unity制作魔法火焰特效方法&#xff1a; 在第一次玩Supergiant Games的RPG游戏《Hades》时&#xff0c;游戏的美术和视觉效果让人非常吃惊。受此启发&#xff0c;希望能够尝试制作类似风格的作品。 工作流程 整个工作从制作简单的火焰贴图开始。首先&#xff0c;我使用PhotoS…

springboot整合rabbitmq发布确认高级

在生产环境中由于一些不明原因&#xff0c;导致 rabbitmq 重启&#xff0c;在 RabbitMQ 重启期间生产者消息投递失败&#xff0c;导致消息丢失&#xff0c;需要手动处理和恢复。于是&#xff0c;我们如何才能进行 RabbitMQ 的消息可靠投递。 发布确认 发布确认方案 架构 配置…

npm install 安装依赖,报错 Host key verification failed

设置 git 的身份和邮箱 git config --global user.name "你的名字" > 用户名 git config --global user.email “你的邮箱" > 邮箱进入 > 用户 > [你的用户名] > .ssh文件夹下,删除 known_hosts 文件即可 进入之后有可能会看到 known_hosts…

知识图谱Neo4j安装到实践全过程

前言&#xff1a; Hello大家好&#xff0c;我是Dream。 在本次实战中&#xff0c;我们将一起完成知识图谱Neo4j安装到实践全过程&#xff0c;探索其中的关系和属性。知识图谱是一种以三元组形式存储的数据结构&#xff0c;由实体、关系和属性组成&#xff0c;能够帮助我们更好地…

SpringMVC之@RequestMapping注解

文章目录 前言一、RequestMapping介绍二、详解&#xff08;末尾附源码&#xff0c;自行测试&#xff09;1.RequestMapping注解的位置2.RequestMapping注解的value属性3.RequestMapping注解的method属性4.RequestMapping注解的params属性&#xff08;了解&#xff09;5.RequestM…

飞书小程序开发

1.tt.showModal后跳转页面 跳转路径要为绝对路径&#xff0c;相对路径跳转无响应。 2.手机息屏后将不再进入onload()生命周期&#xff0c;直接进入onshow()生命周期。 onLoad()在页面初始化的时候触发&#xff0c;一个页面只调用一次。 onShow()在切入前台时就会触发&#x…

网红景区游乐设备普乐蛙5d动感影院体验馆设备组成内容

一个5D7D动感影院体验馆的全套设备组成通常包括以下几个方面&#xff1a; 电影播放设备&#xff1a;包括主控制器、电影播放器、电影储存设备等&#xff0c;用于播放5D电影。 影院座椅&#xff1a;一般采用特殊设计的动感座椅&#xff0c;具备震动、摇晃、抖动等功能&#xff0…

免费的png打包plist工具CppTextu,一款把若干资源图片拼接为一张大图的免费工具

经常做游戏打包贴图的都知道&#xff0c;要把图片打包为一张或多张大图&#xff0c;要使用打包工具TexturePacker。 TexturePacker官方版可以直接导入PSD、SWF、PNG、BMP等常见的图片格式&#xff0c;主要用于网页、游戏和动画的制作&#xff0c;它可以将多个小图片汇聚成一个…

保研面试题复习

信源/信道编码的目的和种类&#xff1f; 这个图是每个人在学习通信原理的时候&#xff0c;都会遇到的图。包含了三要素&#xff1a;信源、信道和信宿。这个图直接可以回答最开始的问题&#xff0c;所谓信源编码就是针对信源编码&#xff0c;所谓信道编码就是针对信道编码。 有…

docker之DockerFile与网络

目录 DockerFile 构建步骤 基础知识 指令 实战&#xff1a;构建自己的centos 第一步&#xff1a;编写dockerfile文件 第二步&#xff1a;构建镜像文件 docker网络 原理 功能 网络模式 host模式 container模式 none模式 bridge模式 DockerFile dockerfile 是用来…