数据生成 | MATLAB实现MCMC马尔科夫蒙特卡洛模拟的数据生成
目录
- 数据生成 | MATLAB实现MCMC马尔科夫蒙特卡洛模拟的数据生成
- 生成效果
- 基本描述
- 模型描述
- 程序设计
- 参考资料
生成效果
基本描述
1.MATLAB实现MCMC马尔科夫蒙特卡洛模拟的数据生成;
2.马尔科夫链蒙特卡洛方法(Markov Chain Monte Carlo),简称MCMC,MCMC算法的核心思想是我们已知一个概率密度函数,需要从这个概率分布中采样,来分析这个分布的一些统计特性。
模型描述
马尔科夫蒙特卡洛模拟(Markov Monte Carlo simulation)是一种基于马尔科夫链的随机模拟方法,用于生成服从某个特定分布的数据样本。下面是使用马尔科夫蒙特卡洛模拟生成数据的一般过程:
定义状态空间:确定数据的可能取值范围,可以是一个离散的状态空间或者一个连续的状态空间。
构建转移矩阵:根据问题的特点,确定状态之间的转移概率。转移矩阵描述了从一个状态转移到另一个状态的概率。
初始化状态:从状态空间中选择一个初始状态。
进行模拟:根据转移矩阵和当前状态,按照一定的概率规则转移到下一个状态。重复这个过程多次,直到达到所需的样本数量。
生成样本:记录每个状态的取值,得到生成的数据样本。
程序设计
- 完整程序和数据获取方式:私信博主回复MATLAB实现MCMC马尔科夫蒙特卡洛模拟的数据生成。
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same") % 建立卷积层,卷积核大小[3, 1],16个特征图reluLayer("Name", "relu_1") % Relu 激活层convolution2dLayer([3, 1], 32, "Name", "conv_2", "Padding", "same") % 建立卷积层,卷积核大小[3, 1],32个特征图reluLayer("Name", "relu_2")]; % Relu 激活层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold") % 建立序列反折叠层flattenLayer("Name", "flatten") % 网络铺平层lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1"); % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in"); % 激活层输出 连接 反折叠层输入%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法'MaxEpochs', 500,... % 最大训练次数 1000'InitialLearnRate', best_lr,... % 初始学习率为0.001'L2Regularization', best_l2,... % L2正则化参数'LearnRateSchedule', 'piecewise',... % 学习率下降'LearnRateDropFactor', 0.1,... % 学习率下降因子 0.1'LearnRateDropPeriod', 400,... % 经过800次训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',... % 每次训练打乱数据集'ValidationPatience', Inf,... % 关闭验证'Plots', 'training-progress',... % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229