UE5制作视差图

双目深度估计开源数据集很多都是用UE制作的,那么我们自己能否通过UE制作自己想要的场景的数据集呢。最近花了点时间研究了一下,分享给需要的小伙伴。

主要使用的是UnrealCV插件,UnrealCV是一个开源项目,旨在帮助计算机视觉研究人员使用虚幻引擎(UE)构建虚拟世界。

下载UnrealCV

GitHub - unrealcv/unrealcv: UnrealCV: Connecting Computer Vision to Unreal Engine

下载并安装对应版本的UE5,参考这个链接:

https://blog.csdn.net/ButDanJi/article/details/133919089

注意UnrealCV的版本和UE5的版本必须一致,例如UnrealCV5.2 必须对应UE5.2,否则可能会报错

进入UE,新建项目,例如这里可以创建一个第一人称游戏的项目:

项目创建完成后,关闭UE。在对应项目下新建Plugins文件夹,并把unrealcv放在项目的Plugins下,例如:E:\UE_Project\testproject5\Plugins\unrealcv-5.2

打开UE下的unrealcv.ini文件,E:\UnrealEngine-5.2.0-release\Engine\Binaries\Win64\unrealcv.ini

将EnableRightEye设置为True

再次打开UE,打开这个项目,此时会提示安装UnrealCV

点击yes安装UnrealCV,等待一段时间后会进入项目,点击编辑-插件,搜索UnrealCV,如果安装成功能搜到UnrealCV且处于启动状态

点击窗口-加载布局-UE4经典布局

在放置Actor下搜索fusion camera actor,放置2个相机到场景中

点击play 运行关卡

按下`输入vget /unrealcv/status

会得到以下日志:

LogUnrealCV: Warning: vget helper function, the real command is vget /unrealcv/status
LogUnrealCV: Warning: Is Listening
No Client Connected
9001
Configuration
Config file: E:/UnrealEngine-5.2.0-release/Engine/Binaries/Win64/unrealcv.ini
Port: 9001
Width: 640
Height: 480
FOV: 90.000000
EnableInput: true
EnableRightEye: true

此时UnrealCV已准备完毕,UnrealCV服务器正处于监听状态,接下来我们通过python构建客户端连接到UnrealCV进行采图

下载

https://github.com/ibaiGorordo/UnrealCV-stereo-depth-generation

注意直接运行会报错,UnrealCV的用法有改变,不能直接使用client.connect() 

需要在代码开头加上

ip = '127.0.0.1'
port = 9001 
client = Client((ip, port))

至于原因可以参考我在UnrealCV下问的帖子:

Can not connect to localhost · Issue #258 · unrealcv/unrealcv

这个项目可以获得平面深度,但不是视差图,我用以下代码获得视差图:

def convert_plane_depth_to_disp(plane_depth, f=320.0, baseline_meters=1.0):disp = f * baseline_meters * (1.0 / plane_depth)return disp

这个代码是参考自以下链接:https://github.com/wuwushrek/AirSim/blob/56e2c5c3ec461f2d95c6a9e80c98767078e718ac/PythonClient/generate_stereo_data.py#L67

于是最后的代码为(这里是示例,相机的姿态等参数需要自己修改):

from unrealcv import Client
import sys
import numpy as np
import cv2
import io
ip = '127.0.0.1'
port = 9001 
client = Client((ip, port))camera_poses=np.array([[-106.933, 459.372, 167.895, 0.213, -80.610, 0.000],
[-97.576, 413.807, 168.308, 2.901, -79.483, 0.000],
[-88.197, 346.847, 166.356, 3.644, -89.711, 0.000],
[-82.595, 278.711, 172.572, 5.711, -85.554, 0.000],
[-73.239, 149.936, 176.386, 0.058, -89.777, 0.000],
[-71.879, 58.805, 175.112, 1.199, -89.030, 0.000],
[-69.923, 10.021, 161.958, 4.062, -59.268, 0.000],
[-28.289, -68.530, 159.251, 2.186, -61.090, 0.000],
[-28.289, -68.530, 159.251, 2.831, -43.937, 0.000],
[-28.289, -68.530, 159.251, 1.782, 0.917, 0.000],
[-28.289, -68.530, 159.251, 3.708, 33.667, 0.000],
[-28.289, -68.530, 159.251, 0.167, 92.277, 0.000],
[-32.458, 5.207, 157.922, 2.922, 93.428, 0.000],
[-35.463, 90.040, 156.689, 1.045, 97.168, 0.000],
[-46.087, 180.173, 155.370, 1.167, 96.643, 0.000],
[-52.370, 234.121, 154.580, 1.167, 96.315, 0.000],
[-52.370, 234.121, 154.580, 3.425, 54.474, 0.000],
[-52.370, 234.121, 154.580, 5.985, 18.172, 0.000],
[-52.370, 234.121, 154.580, 5.675, -10.430, 0.000],
[-52.370, 234.121, 154.580, 11.879, -34.452, 0.000],
[-52.370, 234.121, 154.580, 13.122, -66.362, 0.000],
[-52.370, 234.121, 154.580, 14.454, -81.988, 0.000]])fps = 45
times = np.arange(0,camera_poses.shape[0]*fps,fps)
filled_times = np.arange(0,camera_poses.shape[0]*fps)filtered_poses = np.array([np.interp(filled_times, times, axis) for axis in camera_poses.T]).Tclass UnrealcvStereo():def __init__(self):client.connect() if not client.isconnected():print('UnrealCV server is not running. Run the game downloaded from http://unrealcv.github.io first.')sys.exit(-1)def __str__(self):return client.request('vget /unrealcv/status')@staticmethoddef set_position(pose):# Set position of the first cameraclient.request(f'vset /camera/1/location {pose[0]} {pose[1]} {pose[2]}')client.request(f'vset /camera/1/rotation {pose[3]} {pose[4]} {pose[5]}')client.request(f'vset /camera/2/location {pose[0]} {pose[1]} {pose[2]}')client.request(f'vset /camera/2/rotation {pose[3]} {pose[4]} {pose[5]}')@staticmethoddef get_stereo_pair(eye_distance):res = client.request('vset /action/eyes_distance %d' % eye_distance)res = client.request('vget /camera/1/lit png')left = cv2.imdecode(np.frombuffer(res, dtype='uint8'), cv2.IMREAD_UNCHANGED)res = client.request('vget /camera/2/lit png')right = cv2.imdecode(np.frombuffer(res, dtype='uint8'), cv2.IMREAD_UNCHANGED)return left, right@staticmethoddef convert_depth(PointDepth, f=320):H = PointDepth.shape[0]W = PointDepth.shape[1]i_c = float(H) / 2 - 1j_c = float(W) / 2 - 1columns, rows = np.meshgrid(np.linspace(0, W-1, num=W), np.linspace(0, H-1, num=H))DistanceFromCenter = ((rows - i_c)**2 + (columns - j_c)**2)**(0.5)PlaneDepth = PointDepth / (1 + (DistanceFromCenter / f)**2)**(0.5)return PlaneDepth@staticmethoddef get_depth():res = client.request('vget /camera/1/depth npy')point_depth = np.load(io.BytesIO(res))return UnrealcvStereo.convert_depth(point_depth)@staticmethoddef color_depth(depth_map, max_dist):norm_depth_map = 255*(1-depth_map/max_dist)norm_depth_map[norm_depth_map < 0] =0norm_depth_map[depth_map == 0] =0return cv2.applyColorMap(cv2.convertScaleAbs(norm_depth_map,1), cv2.COLORMAP_MAGMA)def convert_plane_depth_to_disp(plane_depth, f=320.0, baseline_meters=1.0):disp = f * baseline_meters * (1.0 / plane_depth)return disp
if __name__ == '__main__':eye_distance = 10max_depth = 5stereo_generator = UnrealcvStereo()for pose in filtered_poses:stereo_generator.set_position(pose)# Set the eye distanceleft, right = stereo_generator.get_stereo_pair(eye_distance)depth_map = stereo_generator.get_depth()baseline_cm =25# Parameters for cameracx = float(depth_map.shape[1]) / 2.0 - 1.0cy = float(depth_map.shape[0]) / 2.0 - 1.0f = cxdisparity = convert_plane_depth_to_disp(plane_depth=depth_map, f=f, baseline_meters=baseline_cm/100.0)color_depth_map = stereo_generator.color_depth(disparity, max_depth)left = cv2.cvtColor(left, cv2.COLOR_BGRA2BGR)right = cv2.cvtColor(right, cv2.COLOR_BGRA2BGR)output_path = "C:/Users/chen/Desktop/output_image.jpg"output_path1 = "C:/Users/chen/Desktop/output_image1.jpg"output_path2 = "C:/Users/chen/Desktop/output_image2.jpg"cv2.imwrite(output_path, color_depth_map)        cv2.imwrite(output_path1, left)cv2.imwrite(output_path2, right)combined_image = np.hstack((left, right, color_depth_map))cv2.imshow("stereo", combined_image)# Press key q to stopif cv2.waitKey(1) == ord('q'):breakcv2.destroyAllWindows()

运行python文件(运行时,UE的项目必须处于运行状态,即play状态)

这时就能获得双目图像和视差图了。

再往后就是换成自己想要的场景并修改两个相机的姿态以及baseline_meters等参数,修改完就可以得到想要的图像了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/10620.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于遗传优化GRNN和Hog特征提取的交通标志识别算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 HOG 4.2 GRNN&#xff08;General Regression Neural Network&#xff09;模型原理 4.3 遗传算法&#xff08;GA&#xff09;优化GRNN平滑因子 5.算法完整程序工程 1.算法运行效果图预…

C语言【基础篇】之流程控制——掌握三大结构的奥秘

流程控制 &#x1f680;前言&#x1f99c;顺序结构&#x1f4af; 定义&#x1f4af;执行规则 &#x1f31f;选择结构&#x1f4af;if语句&#x1f4af;switch语句&#x1f4af;case穿透规则 &#x1f914;循环结构&#x1f4af;for循环&#x1f4af;while循环&#x1f4af;do -…

C++实现状态模式

首先上代码&#xff1a; #include <iostream> #include <memory>class Context;class State { public:virtual void Handle(Context * context) 0; //纯虚函数virtual ~State() default; //虚析构函数 };//创建状态A class ConcreateStateA : public State{…

【React】PureComponent 和 Component 的区别

前言 在 React 中&#xff0c;PureComponent 和 Component 都是用于创建组件的基类&#xff0c;但它们有一个主要的区别&#xff1a;PureComponent 会给类组件默认加一个shouldComponentUpdate周期函数。在此周期函数中&#xff0c;它对props 和 state (新老的属性/状态)会做一…

二级C语言:二维数组每行最大值与首元素交换、删除结构体的重复项、取出单词首字母

目录 一、程序填空 --- 二维数组每行最大值与首元素交换 题目 分析 知识点 --- 交换语句 二、程序修改 --- 删除结构体的重复项 题目 分析 三、程序设计 --- 取出单词首字母 题目 分析 前言 本章讲解&#xff1a;二维数组每行最大值与首元素交换、删除结构体的重复项…

CUDA学习-内存访问

一 访存合并 1.1 说明 本部分内容主要参考: 搞懂 CUDA Shared Memory 上的 bank conflicts 和向量化指令(LDS.128 / float4)的访存特点 - 知乎 1.2 share memory结构 图1.1 share memory结构 放在 shared memory 中的数据是以 4 bytes(即 32 bits)作为 1 个 word,依…

【python】python基于机器学习与数据分析的手机特性关联与分类预测(源码+数据集)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;专__注&#x1f448;&#xff1a;专注主流机器人、人工智能等相关领域的开发、测试技术。 python基于机器学习与数据分析的手机特性关联与分类…

【leetcode详解】T3175(一点反思)

解题心得 要写出一个好的程序&#xff0c;有效解决问题&#xff0c;思路上就不能“太乖” —— 不能被题目的叙述过程所束缚&#xff0c;而是力求细思问题&#xff0c;抽象化问题&#xff0c;并找到背后的逻辑&#xff1b;最后抓住核心对象&#xff0c;去除多余项&#xff0c;…

图论——最小生成树

最小生成树 给定一个无向图&#xff0c;在图中选择若干条边把图的所有节点连起来。要求边长之和最小。在图论中&#xff0c;叫做求最小生成树。 prim算法 prim 算法采用的是一种贪心的策略。 每次将离连通部分的最近的点和点对应的边加入的连通部分&#xff0c;连通部分逐渐扩大…

jvisualvm工具使用

jvisualvm 是JDK自带的具有图形界面操作功能的JVM性能监控和诊断工具&#xff0c;它不仅能分析和诊断堆转储文件&#xff0c;在线实时监控本地JVM进程&#xff0c;还能监控远程服务器上的JVM进程。 1 分析服务器下载dump文件 1&#xff09;在我们在安装JDK的bin目录双击jvisa…

C++ list

list需知&#xff1a; list不会出现insert迭代器失效问题 链表插入不会影响原有数据相对位置&#xff0c;且不用扩容 但是erase会导致相对数据位置移动&#xff0c;所有其erase会导致迭代器失效 list排序效率很低 不建议使用 小规模数据量可以使用&#xff0c;比较方便 此外…

DeepSeek-R1 论文解读 —— 强化学习大语言模型新时代来临?

近年来&#xff0c;人工智能&#xff08;AI&#xff09;领域发展迅猛&#xff0c;大语言模型&#xff08;LLMs&#xff09;为通用人工智能&#xff08;AGI&#xff09;的发展开辟了道路。OpenAI 的 o1 模型表现非凡&#xff0c;它引入的创新性推理时缩放技术显著提升了推理能力…

【基于SprintBoot+Mybatis+Mysql】电脑商城项目之用户注册

&#x1f9f8;安清h&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;【计算机网络】【Mybatis篇】 &#x1f6a6;作者简介&#xff1a;一个有趣爱睡觉的intp&#xff0c;期待和更多人分享自己所学知识的真诚大学生。 目录 &#x1f3af;项目基本介绍 &#x1f6a6;项…

蓝桥杯思维训练营(一)

文章目录 题目总览题目详解翻之一起做很甜的梦 蓝桥杯的前几题用到的算法较少&#xff0c;大部分考察的都是思维能力&#xff0c;方法比较巧妙&#xff0c;所以我们要积累对应的题目&#xff0c;多训练 题目总览 翻之 一起做很甜的梦 题目详解 翻之 思维分析&#xff1a;一开…

【AI】DeepSeek 概念/影响/使用/部署

在大年三十那天&#xff0c;不知道你是否留意到&#xff0c;“deepseek”这个词出现在了各大热搜榜单上。这引起了我的关注&#xff0c;出于学习的兴趣&#xff0c;我深入研究了一番&#xff0c;才有了这篇文章的诞生。 概念 那么&#xff0c;什么是DeepSeek&#xff1f;首先百…

minimind - 从零开始训练小型语言模型

大语言模型&#xff08;LLM&#xff09;领域&#xff0c;如 GPT、LLaMA、GLM 等&#xff0c;虽然它们效果惊艳&#xff0c; 但动辄10 Bilion庞大的模型参数个人设备显存远不够训练&#xff0c;甚至推理困难。 几乎所有人都不会只满足于用Lora等方案fine-tuing大模型学会一些新的…

【机器学习】自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数

一、使用pytorch框架实现逻辑回归 1. 数据部分&#xff1a; 首先自定义了一个简单的数据集&#xff0c;特征 X 是 100 个随机样本&#xff0c;每个样本一个特征&#xff0c;目标值 y 基于线性关系并添加了噪声。将 numpy 数组转换为 PyTorch 张量&#xff0c;方便后续在模型中…

数据分析系列--④RapidMiner进行关联分析(案例)

一、核心概念 1.项集&#xff08;Itemset&#xff09; 2.规则&#xff08;Rule&#xff09; 3.支持度&#xff08;Support&#xff09; 3.1 支持度的定义 3.2 支持度的意义 3.3 支持度的应用 3.4 支持度的示例 3.5 支持度的调整 3.6 支持度与其他指标的关系 4.置信度&#xff0…

国产之光DeepSeek架构理解与应用分析

目录 初步探索DeepSeek的设计 一、核心架构设计 二、核心原理与优化 三、关键创新点 四、典型应用场景 五、与同类模型的对比优势 六、未来演进方向 从投入行业生产的角度看 一、DeepSeek的核心功能扩展 二、机械电子工程产业中的具体案例 1. 预测性维护&#xff08;Predictive…

Golang :用Redis构建高效灵活的应用程序

在当前的应用程序开发中&#xff0c;高效的数据存储和检索的必要性已经变得至关重要。Redis是一个快速的、开源的、内存中的数据结构存储&#xff0c;为各种应用场景提供了可靠的解决方案。在这个完整的指南中&#xff0c;我们将学习什么是Redis&#xff0c;通过Docker Compose…