【C++杂货铺】探索vector的底层实现

在这里插入图片描述

文章目录

  • 一、STL
    • 1.1 什么是STL?
    • 1.2 STL的版本
    • 1.3 STL的六大组件
  • 二、vector的介绍及使用
    • 2.1 vector的介绍
    • 2.2 vector的使用
      • 2.2.1 vector的定义
      • 2.2.2 vector iterator
      • 2.2.3 vector空间增长问题
      • 2.2.4 vector增删查改
    • 2.3 vector\<char\> 可以替代 string 嘛?
  • 三、vector模拟实现
    • 3.1 成员变量
    • 3.2 成员函数
      • 3.2.1 构造函数
      • 3.2.2 拷贝构造
      • 3.2.3 operator=
      • 3.2.4 size
      • 3.2.5 capacity
      • 3.3.6 迭代器相关
      • 3.2.7 reserve(深拷贝问题)
      • 3.2.8 resize
      • 3.2.9 operator[ ]
      • 3.2.10 insert(迭代器失效问题)
      • 3.2.11 erase(迭代器失效问题)
      • 3.2.12 pop_back
  • 四、结语

一、STL

1.1 什么是STL?

STL(standard template libaray-标准模板库):是C++标准库的一部分,不仅是一个可复用的组件库,而且是一个包罗数据结构与算法的软件框架

在这里插入图片描述

1.2 STL的版本

  • 原始版本:Alexander Stepanov、Meng Lee在惠普实验室完成的版本,本着开源精神,它们声明允许任何人任意运用、拷贝、修改、传播、商业使用这些代码,无需付费。唯一的条件就是也需要像原始版本一样做开源使用。HP版本是所有STL的祖先。

  • P.J版本:由P. J. Plauger开发,继承自HP版本,被微软(Windows Visual C++)采用,不能公开或修改,缺陷:可读性比较低,符号命名比较怪异。

  • RW版本:由Rouge Wage公司开发,继承自HP版本。被C++Builder采用,不能公开或修改,可读性一般。

  • SGI版本:由Silicon Graphics Computer Systems,Inc公司开发,继承自HP版本。被GCC(Linux)采用,可移植性好,可公开、修改甚至贩卖,从命名风格和编程风格上看,阅读性非常高。建议大家在学习STL的过程中,可以参考这个版本的源代码。

1.3 STL的六大组件

在这里插入图片描述

二、vector的介绍及使用

2.1 vector的介绍

  • vector 是表示可变大小数组序列容器。

  • 就像数组一样,vector 也采用连续的存储空间来存储元素。也就意味着可以采用小标对 vector 的元素进行访问,和数组处理一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。

  • 本质讲,vector 使用动态分配数组来存储它的元素。当新元素插入时,为了增加存储空间,这个数组需要被重新分配大小。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价较高的任务,因为每当一个新的元素加入到容器的时候,vector 并不会每次都重新分配大小。

  • vector 分配空间策略:vector 会分配一些额外的空间以适应可能的增长,因此存储空间(容量)比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候实在常数时间复杂度完成的。

  • 因此,vector 占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。

  • 与其它的动态序列容器相比(如:deque、list、forward_list),vector 在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率会比较低。

2.2 vector的使用

vector 学习时一定要学会查看文档:vector的文档介绍,vector 在实际中非常重要,在实际中我们熟悉常用的接口就可以,下面列出了需要我们重点掌握的接口。

2.2.1 vector的定义

构造函数声明接口说明
vector()无参构造
vector(size_type n, const value_type& val = value_type())构造并初始化 n 个 val
vector(const vector& x)拷贝构造
vector(Inputlterator first, Inputiterator last)使用迭代器区间进行初始化构造

小Tips:size_type 表示一个无符号整数类型,value_type 是第一个模板参数,也就是要存储的数据类型。使用迭代器区间的构造函数是函数模板,只要是满足 Input 类型的迭代器都可以使用该构造函数。

int TestVector1()
{vector<int> first;                                vector<int> second(4, 100);                       vector<int> third(second.begin(), second.end());  vector<int> fourth(third);                       int myints[] = { 16,2,77,29 };vector<int> fifth(myints, myints + sizeof(myints) / sizeof(int));cout << "The contents of fifth are:";for (vector<int>::iterator it = fifth.begin(); it != fifth.end(); ++it)cout << ' ' << *it;cout << '\n';return 0;
}

2.2.2 vector iterator

iterator的使用接口说明
begin + end获取第一个数据位置的 iterator / const_iterator,获取最后一个数据下一个位置的iterator / const_iterator
rbegin + rend获取最后一个数据位置的 reverse_iterator,获取第一个数据前一个位置的 reverse_iterator

在这里插入图片描述

void PrintVector(const vector<int>& v)
{// const对象使用const迭代器进行遍历打印vector<int>::const_iterator it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;
}

2.2.3 vector空间增长问题

容量空间接口说明
size()获取数据个数
capacity()获取容量大小
empty()判断是否为空
resize(size_type n); resize (size_type n, const value_type& val)改变 vector 的 size
reserve(size_type n)改变 vector 的 capacity
  • vs 和 g++ 的扩容机制有所不同,vs 下 capacity 是按照 1.5 倍增长的,g++ 是按照 2 倍增长的。vs 是 PJ 版本 STL,g++ 是 SGI 版本 STL。

  • reserve 只负责开辟空间,如果确定知道需要多少空间,reserve 可以缓解 vector 增容的代价缺陷问题。

  • resize 在开空间的同时还会进行初始化,影响 成员变量 _size。

void TestVectorExpand()
{size_t sz;vector<int> v;sz = v.capacity();cout << "making v grow:\n";for (int i = 0; i < 100; ++i){v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}

VS 下的结果:
在这里插入图片描述
Linux 下的结果:
在这里插入图片描述
小Tips:如果已经确定 vector 中要存储元素的大概个数,可以提前将空间设置足够,就可以避免边插入边扩容导致效率低下的问题。

void TestVectorExpandOP()
{vector<int> v;size_t sz = v.capacity();v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容cout << "making bar grow:\n";for (int i = 0; i < 100; ++i){v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}

2.2.4 vector增删查改

vector 增删查改接口说明
push_back尾插
pop_back尾删
find查找(这个是算法模块实现,不是 vector 的成员接口)
insert在 position 之前插入 val
erase删除 position 位置的数据
swap交换两个 vector 的数据空间
operator[ ]像数组一样访问,通过断言来检查,而 at 是通过抛异常
//经典的错误
void Testerro()
{vector<int> v1;v1.reserve(10);for (size_t i = 0; i < 10; i++){v1[i] = i;}
}

注意:上面的代码虽然给 v1 提前开了 10 个空间,但是 v1 中的有效元素个数还是 0,即 v1.size() 的返回值是0,这样一来我们就不能直接通过下标去访问 vector 对象中的每一个元素,因为 operator[ ] 实现中的第一步就是检查下标的合理性,防止越界访问,执行 assert(pos < _size),而此时 _size 是 0,就会出错。上面的代码只需要把 reserve 改成 resize 就可以正常运行,因为 resize 会改变 _size 的大小。如果硬要使用 reserve 提前开空间,那么接下来要使用 push_back 来插入数据。

2.3 vector<char> 可以替代 string 嘛?

答案是不可以,虽然他们俩的底层本质上都是动态增长的数组,但是 string 字符串的结尾默认有 \0,可以更好的兼容 C 接口,而 vector<char> 的结尾默认是没有 \0 的,需要我们自己插入。

三、vector模拟实现

在这里插入图片描述

3.1 成员变量

public:typedef T* iterator;typedef const T* const_iterator;
private:iterator _start;iterator _finish;iterator _end_of_storage;

3.2 成员函数

3.2.1 构造函数

vector():_start(nullptr), _finish(nullptr),_end_of_storage(nullptr)
{}vector(size_t n, const T& val = T()):_start(nullptr), _finish(nullptr), _end_of_storage(nullptr)
{resize(n, val);
}vector(int n, const T& val = T()):_start(nullptr), _finish(nullptr), _end_of_storage(nullptr)
{resize(n, val);
}//迭代器区间初始化
template<class InputIterator>
vector(InputIterator first, InputIterator last)
{while (first != last){push_back(*first);first++;}
}

小Tips:迭代器区间初始化采用的是函数模板,因为它可能使用不同类型的迭代器。其次需要单独提供一个 vector(int n, const T& val = T()),因为迭代器区间初始化采用的是函数模板,如果不单独提供这种构造函数的话,vector<int> v1(10, 1) 这种情况会去走最匹配的,即和迭代器区间初始化函数匹配,而我们希望它走 vector(size_t n, const T& val = T()) 构造函数,但是 10 会被当做 int 型,和 size_t 匹配不上,因此就会去和迭代器区间初始化函数进行匹配,InputIterator 就会被实例化成 int 型,函数中会对 int 型解引用,就会报错,其次逻辑也不符。因此需要针对 int 单独提供一个构造函数。

3.2.2 拷贝构造

//方案一
vector(const vector<T>& V):_start(nullptr), _finish(nullptr), _end_of_storage(nullptr)
{iterator tmp = new T[V.capacity()];//memcpy(tmp, V._start, sizeof(T) * V.size());for (size_t i = 0; i < V.size(); i++){tmp[i] = V._start[i];}_start = tmp;_finish = _start + V.size();_end_of_storage = _start + V.capacity();
}//方案二
vector(const vector<T>& V):_start(nullptr), _finish(nullptr), _end_of_storage(nullptr)
{reserve(V.capacity());for (auto e : V){push_back(e);}
}

小Tips:这里设计深拷贝问题,在下文的 reserve 中会提到。

3.2.3 operator=

void swap(vector<T> v)
{std::swap(v._start, _start);std::swap(v._finish, _finish);std::swap(v._end_of_storage, _end_of_storage);
}vector<T>& operator=(vector<T> v)//调用拷贝构造函数
{swap(v);return *this;
}

3.2.4 size

size_t size() const
{return _finish - _start;
}

3.2.5 capacity

size_t capacity() const
{return _end_of_storage - _start;
}

3.3.6 迭代器相关

iterator begin()
{return _start;
}iterator end()
{return _finish;
}const_iterator begin() const
{return _start;
}const_iterator end() const
{return _finish;
}

3.2.7 reserve(深拷贝问题)

void reserve(size_t new_capacity)
{if (new_capacity > capacity()){iterator tmp = new T[new_capacity];if (_start)//如果原来的_start申请过空间,要先将源空间中的内容拷贝过来{memcpy(tmp, _start, sizeof(T)*size());delete[] _start;}size_t vsize = size();_start = tmp;_finish = tmp + vsize;//记得更新_finish_end_of_storage = _start + new_capacity;}
}

注意:这里需要更新 _finish 和 _end_ofstorage,因为他俩表示的是位置。要更新 _finish,首先要将 size() 保存一下,因为更新 _start 后,_start 指向新空间的开头,而 _finish 指向旧空间的结尾,此时去调用 size(),计算出来的个数是有问题的,因此需要再更新 _start 之前就将原来的元素个数,即 size() 保存一份。

小Tips:上面这种扩容逻辑,当 T 是内置类或者是无需进行深拷贝的自定义类型来说,是完全满足的。但是当 T 是需要进行深拷贝的内置类型时,上面这种扩容方式就会出现大问题。以 vector<string> 为例,即当 T 是 string 的时候。

在这里插入图片描述
如上图所示,如果简单的用 memcpy 将旧空间的数据拷贝到新空间,那么新旧空间中存储的 string 对象指向同一个堆区上的字符串,接着在执行 delete[] _start; 销毁旧空间的时候,由于该 _start 是一个 string* 的指针,所以会先调用 string 的析构函数,将对象中申请的空间释放,即释放 _str 指向的空间,接着再去调用 operator delete 函数释放 string 对象的空间。这样一来,新空间中存储的 string 对象就有问题了,它们的成员变量 _str 指向的空间已经被释放了。这里的问题就出在 memcpy 执行的是浅拷贝。我们可以对上述代码稍作修改即可:

void reserve(size_t new_capacity)
{if (new_capacity > capacity()){iterator tmp = new T[new_capacity];if (_start)//如果原来的_start申请过空间,要先将源空间中的内容拷贝过来{//memcpy(tmp, _start, sizeof(T)*size());for (size_t i = 0; i < size(); i++){tmp[i] = _start[i];}delete[] _start;}size_t vsize = size();_start = tmp;_finish = tmp + vsize;//记得更新_finish_end_of_storage = _start + new_capacity;}
}

修改后执行tmp[i] = _start[i]; 会去调用 string 对象的赋值运算重载,进行深拷贝。

3.2.8 resize

void resize(size_t n, const T& val = T())//缺省参数给的是一个匿名对象
{if (n > size()){//检查容量,扩容if (n > capacity()){reserve(n);}//开始填数iterator it = end();while (it < _start + n){*it = val;it++;}}_finish = _start + n;
}

3.2.9 operator[ ]

T& operator[](size_t pos)//读写版本
{assert(pos < size());return _start[pos];
}const T& operator[](size_t pos) const//只读版本
{assert(pos < size());return _start[pos];
}

3.2.10 insert(迭代器失效问题)

iterator insert(iterator pos, const T& val)
{assert(pos >= _start && pos <= _finish);size_t rpos = pos - _start;//保存一下pos的相对位置//检查容量if (_finish + 1 >= _end_of_storage){size_t old_capacity = capacity();reserve(old_capacity == 0 ? 4 : old_capacity * 2);}pos = _start + rpos;//更新pos//插入数据iterator end = _finish - 1;while (end >= pos){*(end + 1) = *end;end--;}*pos = val;_finish++;return pos;
}

注意:在进行 insert 的时候,会引发一个著名的问题——迭代器失效。我们希望在 pos 位置插入一个数据,pos 是一个迭代器。在插入数据之前要先检查容量,进行扩容,如果执行了扩容逻辑,_start、_finish、_end_of_storage 都指向了新空间,旧空间已经被释放了,而 pos 指向的还是原来空间中的某个位置,此时 pos 就变成了野指针,再去 pos 指向的位置填入数据,就会造成非法访问。为了避免这个问题,我们可以先保存一下 pos 的相对位置,扩完容之后再去更新 pos。

在这里插入图片描述
小Tips:保存相对位置更新 pos,是 insert 函数内部的解决方式,由于是传值传参,形参的 pos 更新,并不会改变实参的 pos,因此为了解决外部的迭代器失效问题,这里采用返回值的方式,将更新后的 pos 返回。可能会有小伙伴觉得,直接把形参的 pos 变成引用不香嘛?这样对形参的更新就相当于是对实参的更新。想法很好,但是不现实,因为实参很有可能具有常性,例如实参如果用 begin()、end(),他俩都是传值返回,会产生一个临时变量,该临时变量具有常性,如果形参 pos 用引用的话,就需要加 const 进行修饰,但是!但是!!如果用 const 进行修饰,那在函数内部就不能对 pos 进行更新。因此形参 pos 不能用引用。

总结:会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、assign、
push_back等。

3.2.11 erase(迭代器失效问题)

iterator erase(iterator pos)
{assert(pos >= _start && pos <= _finish);iterator cur = pos + 1;while (cur != _finish){*(cur - 1) = *cur;cur++;}_finish--;return pos;
}

注意:erase 删除 pos 位置元素后,pos 位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,但是:如果 pos 刚好是最后一个元素,删完之后 pos 刚好是 _finish 的位置,而 _finish 位置是没有元素的,那么 pos 就失效了。因此,删除 vector 中任意位置上的元素时,VS 就认为该迭代器失效了(VS 是通过自己重写的 iterator 进行强制检查)。Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。为了解决外部的迭代器失效问题,这里还是采用返回值的方式,返回 pos 下一个位置元素的迭代器。

3.2.12 pop_back

//直接复用即可
void pop_back()
{erase(--end());
}

四、结语

今天的分享到这里就结束啦!如果觉得文章还不错的话,可以三连支持一下,春人的主页还有很多有趣的文章,欢迎小伙伴们前去点评,您的支持就是春人前进的动力!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/106614.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

指针-C语言(初阶)

目录 一、什么是指针 二、指针和指针类型 2.1 指针-整数 2.2 指针的解引用 三、野指针 3.1 野指针形成原因 3.2 如何规避野指针 四、指针运算 4.1 指针-整数 4.2 指针-指针 4.3 指针的关系运算 五、指针和数组 六、二级指针 七、指针数组 一、什么是指针 指针是内存中一个…

【八股】2023秋招八股复习笔记4(MySQL Redis等)

文章目录 目录1、MySQLmysql索引实现mysql索引优化mysql索引失效的情况mysql 千万数据优化mysql 事务隔离级别 & 实现原理mysql MVCC版本链&#xff08;undo log&#xff09;mysql数据同步机制 & 主从复制 &#xff08;binlog&#xff09;mysql 日志&数据恢复&…

5G NR:RACH流程-- Msg1之生成PRACH Preamble

随机接入流程中的Msg1&#xff0c;即在PRACH信道上发送random access preamble。涉及到两个问题&#xff1a; 一个是如何产生preamble&#xff1f;一个是如何选择正确的PRACH时频资源发送所选的preamble? 一、PRACH Preamble是什么 PRACH Preamble从数学上来讲是一个长度为…

MyBatis与Spring的集成整合加优化分页功能

目录 一.为什么要将MyBatis和Spring整合&#xff1f;&#xff1f;&#xff1f; 二.配置环境 2.1 pom文件 2.2 xml文件 三.演示举例 四.Aop整合pageHelper 分页插件 今天的分享就到这啦&#xff01;&#xff01;&#xff01; 一.为什么要将MyBatis和Spring整合&#xff1f…

自动驾驶感知传感器标定安装说明

1. 概述 本标定程序为整合现开发的高速车所有标定模块,可实现相机内参标定和激光、相机、前向毫米波 至车辆后轴中心标定,标定参数串联传递并提供可视化工具验证各个模块标定精度。整体标定流程如下,标定顺序为下图前标0-->1-->2-->3,相同编号标定顺序没有强制要求…

【业务功能篇83】微服务SpringCloud-ElasticSearch-Kibanan-docke安装-应用层实战

五、ElasticSearch应用 1.ES 的Java API两种方式 Elasticsearch 的API 分为 REST Client API&#xff08;http请求形式&#xff09;以及 transportClient API两种。相比来说transportClient API效率更高&#xff0c;transportClient 是通过Elasticsearch内部RPC的形式进行请求…

共享内存 windows和linux

服务端&#xff0c;即写入端 #include <iostream> #include <string.h> #define BUF_SIZE 1024 #ifdef _WIN32 #include <windows.h> #define SHARENAME L"shareMemory" HANDLE g_MapFIle; LPVOID g_baseBuffer; #else #define SHARENAME "sh…

使用通信顺序进程(CSP)模型的 Go 语言通道

在并发编程中&#xff0c;许多编程语言采用共享内存/状态模型。然而&#xff0c;Go 通过实现 通信顺序进程&#xff08;CSP&#xff09;模型来区别于众多。在CSP中&#xff0c;程序由不共享状态的并行进程组成&#xff1b;相反&#xff0c;它们通过通道进行通信和同步操作。因此…

wireshark抓包

Wireshark是非常流行的网络封包分析软件&#xff0c;可以截取各种网络数据包&#xff0c;并显示数据包详细信息。常用于开发测试过程各种问题定位。本文主要内容包括&#xff1a; 1、Wireshark软件下载和安装以及Wireshark主界面介绍。 2、WireShark简单抓包示例。通过该例子学…

最新绕过目标域名CDN进行信息收集技术

绕过目标域名CDN进行信息收集 1&#xff0e;CDN简介及工作流程 CDN&#xff08;Content Delivery Network&#xff0c;内容分发网络&#xff09;的目的是通过在现有的网络架构中增加一层新的Cache&#xff08;缓存&#xff09;层&#xff0c;将网站的内容发布到最接近用户的网…

ubuntu下自启动设置,为了开机自启动launch文件

1、书写sh脚本文件 每隔5秒钟启动一个launch文件&#xff0c;也可以直接在一个launch文件中启动多个&#xff0c;这里为了确保启动顺利&#xff0c;添加了一些延时 #! /bin/bash ### BEGIN INIT sleep 5 gnome-terminal -- bash -c "source /opt/ros/melodic/setup.bash…

uniapp - 全平台兼容实现上传图片带进度条功能,用户上传图像到服务器时显示上传进度条效果功能(一键复制源码,开箱即用)

效果图 uniapp小程序/h5网页/app实现上传图片并监听上传进度,显示进度条完整功能示例代码 一键复制,改下样式即可。 全部代码 记得改下样式,或直接

MyBatis的基本入门及Idea搭建MyBatis坏境且如何一步骤实现增删改查(CRUD)---详细介绍

一&#xff0c;MaBatis是什么&#xff1f; 首先是一个开源的Java持久化框架&#xff0c;它可以帮助开发人员简化数据库访问的过程并提供了一种将SQL语句与Java代码进行解耦的方式&#xff0c;使得开发人员可以更加灵活地进行数据库操作。 1.1 Mabatis 受欢迎的点 MyBatis不仅是…

使用CSS的@media screen 规则为不同的屏幕尺寸设置不同的样式(响应式图片布局)

当你想要在不同的屏幕尺寸或设备上应用不同的CSS样式时&#xff0c;可以使用 media 规则&#xff0c;特别是 media screen 规则。这允许你根据不同的屏幕特性&#xff0c;如宽度、高度、方向等&#xff0c;为不同的屏幕尺寸设置不同的样式。 具体来说&#xff0c;media screen…

【Spring MVC】

目录 &#x1f36e;1 什么是 MVC &#xff1f; &#x1f381;2 Spring MVC 的连接 &#x1f358;2.1 RequestMapping 实现 POST 和 GET 请求 &#x1f963;2.2 GetMapping 只支持 GET 请求 &#x1fad6;2.3 PostMapping 只支持 POST 请求 &#x1f36c;3 Spring MVC 获取参数的…

Spring复习:(56)PropertySourcePlaceholderConfigurer的工作原理

PropertySourcePlaceholderConfigurer的用途&#xff1a;通过配置文件&#xff08;比如.properties文件&#xff09;给bean设置属性&#xff0c;替代属性占位符 示例&#xff1a; 属性配置文件 spring.datasource.urljdbc:mysql://xxx.xxx.xxx.xxx/test spring.datasource.us…

【数仓建设系列之三】数仓建模方式及如何评估数仓完善性

【数仓建设系列之三】数仓建模方式及如何评估数仓完善性 上篇文章我们对数仓的分层架构及核心概念做了简单介绍&#xff0c;同时也指明DW层是数仓建模的核心层。本篇文章&#xff0c;将详细从常见的维度模型建设手段及如何评估数仓建设的完善性展开讨论。 一、数仓维度建模 ​…

Vue2向Vue3过度核心技术进阶语法

目录 1 v-model简化代码1.目标&#xff1a;2.如何简化&#xff1a;3.代码示例 2 sync修饰符1.作用2.场景3.本质4.语法5.代码示例6.总结 3 ref和$refs1.作用2.特点&#xff1a;3.语法4.注意5.代码示例 4 异步更新 & $nextTick1.需求2.代码实现3.问题4.解决方案 1 v-model简化…

Scikit-learn强化学习代码批注及相关练习

一、游戏介绍 木棒每保持平衡1个时间步&#xff0c;就得到1分。每一场游戏的最高得分为200分每一场游戏的结束条件为木棒倾斜角度大于41.8或者已经达到200分。最终获胜条件为最近100场游戏的平均得分高于195。代码中env.step&#xff08;&#xff09;&#xff0c;的返回值就分…

openresty安装与网站发布

文章目录 安装依赖下载安装包解压安装包安装启动nginx配置环境变量配置开机启动发布静态网站 OpenResty 是一个基于 Nginx 与 Lua 的高性能 Web 平台&#xff0c;其内部集成了大量精良的 Lua 库、第三方模块以及大多数的依赖项。用于方便地搭建能够处理超高并发、扩展性极高的动…