计算机毕业设计Python+CNN卷积神经网络考研院校推荐系统 考研分数线预测 考研推荐系统 考研爬虫 考研大数据 Hadoop 大数据毕设 机器学习

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作

主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等

业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等。

收藏点赞不迷路  关注作者有好处

                                         文末获取源码

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

开题报告

题目:Python+CNN卷积神经网络考研院校推荐系统 考研分数线预测

一、研究背景与意义

研究生入学考试(考研)是许多大学毕业生追求深造的重要途径。随着考研人数的逐年增加,考生在选择研究生专业和院校时面临的选择也日益复杂。为了帮助考生更好地选择适合自己的研究生专业和院校,开发一个高效的考研推荐系统显得尤为重要。该系统旨在通过数据分析和可视化技术,为考生提供基于数据的研究生专业和院校推荐,同时预测考研分数线,帮助他们更好地规划自己的学术生涯。

二、研究目标与内容

  1. 研究目标

    • 开发一个基于Python和CNN卷积神经网络的考研院校推荐系统。
    • 实现考研分数线的预测功能。
    • 为考生提供个性化的研究生专业和院校推荐服务。
  2. 研究内容

    • 数据采集与处理:使用Python编写爬虫程序,并行爬取研究生院校的基本信息和历年考研数据,包括学校名称、地理位置、专业设置、报考人数、录取人数、专业录取分数线等。对采集到的数据进行清洗、补全、整合和转换,确保数据的质量和一致性。
    • 模型构建与训练:基于学校评分、收藏数据等,构建基于CNN卷积神经网络的推荐模型,用于预测和推荐适合的院校。同时,构建基于历史数据的考研分数线预测模型。将数据集分为训练集和测试集,评估模型的性能和准确性,并根据评估结果对模型进行调整和改进。
    • 数据可视化与交互:使用Pyecharts等可视化库,绘制柱状图、折线图、饼状图等,展示分析结果和模型预测的信息。设计交互式界面,用户可以通过界面进行筛选和选择,提高用户体验。

三、研究方法与技术路线

  1. 软件开发环境

    • 使用PyCharm作为开发环境。
    • MySQL作为数据库管理系统,Navicat作为数据库管理工具。
  2. 第三方库与框架

    • 使用Django、Django-simpleui、DjangoRESTframework等构建后端开发环境。
    • 使用Pandas、Requests、BeautifulSoup4等进行数据分析和处理。
    • 使用Pyecharts进行数据可视化。
    • 使用TensorFlow或PyTorch等深度学习框架构建CNN模型。
  3. 技术路线

    • 数据采集:编写两个并行爬虫,一个用于采集研究生院校的基本信息,另一个用于采集历年考研数据。通过网络请求和HTML解析的方式获取所需数据,并将数据保存到本地CSV文件或数据库中。
    • 数据处理:对采集到的数据进行清洗、补全、整合和转换等处理操作,以确保数据的质量和一致性。
    • 数据分析:利用Pandas、NumPy等数据分析工具,对采集到的数据进行统计分析。分析院校收藏Top10和院校评分Top10等数据,统计院校数量、双一流院校数量、自划线院校数量排名前十的省份,以及对专业报录比、学校报录比等进行分析。
    • 模型构建与训练:基于学校评分和收藏数据等,构建基于CNN卷积神经网络的推荐模型。使用历史数据构建和训练考研分数线预测模型。将数据集分为训练集和测试集,评估模型的性能和准确性,并根据评估结果对模型进行调整和改进。
    • 数据可视化与交互:使用Pyecharts等可视化库绘制图表,展示分析结果和模型预测的信息。设计交互式界面,提高用户体验。

四、预期成果与创新点

  1. 预期成果

    • 实现一个基于Python和CNN卷积神经网络的考研院校推荐系统。
    • 实现考研分数线的预测功能。
    • 提供数据可视化功能,通过图表形式展示分析结果和预测结果。
  2. 创新点

    • 引入CNN卷积神经网络技术,提高推荐模型的准确性和效率。
    • 综合考虑多种因素,如学校评分、收藏数据等,构建综合推荐模型,提高推荐的个性化程度。
    • 通过数据可视化技术,将分析结果以直观、易于理解的图表形式展示,提高用户体验。

五、研究计划与进度安排

  1. 第一阶段(1-2个月)

    • 完成数据采集与处理工作,确保数据的质量和一致性。
    • 进行初步的数据分析,了解数据特征和分布情况。
  2. 第二阶段(2-3个月)

    • 构建基于CNN卷积神经网络的推荐模型和考研分数线预测模型。
    • 对模型进行初步的训练和评估,根据评估结果对模型进行调整和改进。
  3. 第三阶段(1-2个月)

    • 实现数据可视化功能,将分析结果和预测结果以图表形式展示。
    • 设计交互式界面,提高用户体验。
  4. 第四阶段(1个月)

    • 进行系统测试与优化,确保系统的稳定性和可靠性。
    • 撰写论文并准备答辩,完成项目的总结与验收工作。

六、参考文献

(由于篇幅限制,未列出具体参考文献,但在实际撰写过程中应详细列出所有引用的文献。)


通过以上内容,本项目旨在开发一个基于Python和CNN卷积神经网络的考研院校推荐系统,同时实现考研分数线的预测功能,为考生提供个性化的研究生专业和院校推荐服务,帮助他们更好地选择适合自己的学术道路。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/10682.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

仿真设计|基于51单片机的温室环境监测调节系统

目录 具体实现功能 设计介绍 51单片机简介 资料内容 仿真实现(protues8.7) 程序(Keil5) 全部内容 资料获取 具体实现功能 (1)LCD1602液晶第一行显示当前的光照值及二氧化碳浓度值,第二…

智慧园区如何利用智能化手段提升居民幸福感与环境可持续性

内容概要 在当今社会,随着城市化进程的加快,智慧园区作为一种新兴的城市管理模式,逐渐获得了人们的关注。智慧园区不仅仅是物理空间的规划,更是一种通过智能化手段提升居民幸福感与环境可持续性的综合解决方案。本段将对智慧园区…

Android --- CameraX讲解

预备知识 surface surfaceView SurfaceHolder surface 是什么? 一句话来说: surface是一块用于填充图像数据的内存。 surfaceView 是什么? 它是一个显示surface 的View。 在app中仍在 ViewHierachy 中,但在wms 中可以理解为…

NLP深度学习 DAY5:Sequence-to-sequence 模型详解

Seq2Seq(Sequence-to-Sequence)模型是一种用于处理输入和输出均为序列任务的深度学习模型。它最初被设计用于机器翻译,但后来广泛应用于其他任务,如文本摘要、对话系统、语音识别、问答系统等。 核心思想 Seq2Seq 模型的目标是将…

Java锁自定义实现到aqs的理解

专栏系列文章地址:https://blog.csdn.net/qq_26437925/article/details/145290162 本文目标: 理解锁,能自定义实现锁通过自定义锁的实现复习Thread和Object的相关方法开始尝试理解Aqs, 这样后续基于Aqs的的各种实现将能更好的理解 目录 锁的…

基于STM32的阿里云智能农业大棚

目录 前言: 项目效果演示: 一、简介 二、硬件需求准备 三、硬件框图 四、CubeMX配置 4.1、按键、蜂鸣器GPIO口配置 4.2、ADC输入配置 4.3、IIC——驱动OLED 4.4、DHT11温湿度读取 4.5、PWM配置——光照灯、水泵、风扇 4.6、串口——esp8266模…

【游戏设计原理】96 - 成就感

成就感是玩家体验的核心,它来自完成一件让自己满意的任务,而这种任务通常需要一定的努力和挑战。游戏设计师的目标是通过合理设计任务,不断为玩家提供成就感,保持他们的参与热情。 ARCS行为模式(注意力、关联性、自信…

MySQL CTE:解锁SQL查询新模式

目录 一、CTE 初相识 二、CTE 基础语法 (一)基本语法结构 (二)语法规则详解 三、非递归 CTE 应用实例 (一)单 CTE 简单查询 (二)多 CTE 联合查询 四、递归 CTE 深入探索 &…

C#,入门教程(12)——数组及数组使用的基础知识

上一篇: C#,入门教程(11)——枚举(Enum)的基础知识和高级应用https://blog.csdn.net/beijinghorn/article/details/123917587https://blog.csdn.net/beijinghorn/article/details/123917587 数组是一种数据集合,是一组…

【leetcode练习·二叉树】计算完全二叉树的节点数

本文参考labuladong算法笔记[拓展:如何计算完全二叉树的节点数 | labuladong 的算法笔记] 如果让你数一下一棵普通二叉树有多少个节点,这很简单,只要在二叉树的遍历框架上加一点代码就行了。 但是,力扣第第 222 题「完全二叉树的…

低代码系统-产品架构案例介绍、轻流(九)

轻流低代码产品定位为零代码产品,试图通过搭建来降低企业成本,提升业务上线效率。 依旧是从下至上,从左至右的顺序 名词概述运维层底层系统运维层,例如上线、部署等基础服务体系内置的系统能力,发消息、组织和权限是必…

对顾客行为的数据分析:融入2+1链动模式、AI智能名片与S2B2C商城小程序的新视角

摘要:随着互联网技术的飞速发展,企业与顾客之间的交互方式变得日益多样化,移动设备、社交媒体、门店、电子商务网站等交互点应运而生。这些交互点不仅为顾客提供了便捷的服务体验,同时也为企业积累了大量的顾客行为数据。本文旨在…

MSA Transformer

过去的蛋白质语言模型以单个序列为输入,MSA Transformer以多序列比对的形式将一组序列作为输入。该模型将行和列注意力交织在输入序列中,并在许多蛋白质家族中使用mask语言建模目标进行训练。模型的性能远超过了当时最先进的无监督学习方法,其…

QT实现有限元软件操作界面

本系列文章致力于实现“手搓有限元,干翻Ansys的目标”,基本框架为前端显示使用QT实现交互,后端计算采用Visual Studio C。 本篇将二维矩形截面梁单元(Rect_Beam2D2Node)组成的钢结构桥作为案例来展示软件功能。 也可以…

推荐一款好用的翻译类浏览器扩展插件

给大家推荐一款实用的翻译工具——沉浸式翻译。这是一款免费、高效的AI驱动浏览器扩展插件,能够帮助用户轻松打破语言障碍,享受沉浸式的阅读体验。 主要特性 沉浸式阅读体验:通过智能识别网页主内容区域并进行双语对照翻译,让用户…

ElasticSearch-文档元数据乐观并发控制

文章目录 什么是文档?文档元数据文档的部分更新Update 乐观并发控制 最近日常工作开发过程中使用到了 ES,最近在检索资料的时候翻阅到了 ES 的官方文档,里面对 ES 的基础与案例进行了通俗易懂的解释,读下来也有不少收获&#xff0…

开源的瓷砖式图像板系统Pinry

简介 什么是 Pinry ? Pinry 是一个开源的瓷砖式图像板系统,旨在帮助用户轻松保存、标记和分享图像、视频和网页。它提供了一种便于快速浏览的格式,适合喜欢整理和分享多种媒体内容的人。 主要特点 图像抓取和在线预览:支持从网页…

Java 大视界 -- Java 大数据在自动驾驶中的数据处理与决策支持(68)

💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…

【数据结构】初识链表

顺序表的优缺点 缺点: 中间/头部的插入删除,时间复杂度效率较低,为O(N) 空间不够的时候需要扩容。 如果是异地扩容,增容需要申请新空间,拷贝数据,释放旧空间,会有不小的消耗。 扩容可能会存在…

I.MX6ULL 中断介绍上

i.MX6ULL是NXP(原Freescale)推出的一款基于ARM Cortex-A7内核的微处理器,广泛应用于嵌入式系统。在i.MX6ULL中,中断(Interrupt)是一种重要的机制,用于处理外部或内部事件,允许微处理…