YOLOv8教程系列:三、K折交叉验证——让你的每一份标注数据都物尽其用(yolov8目标检测+k折交叉验证法)

YOLOv8教程系列:三、K折交叉验证——让你的每一份标注数据都物尽其用(yolov8目标检测+k折交叉验证法)

0.引言

k折交叉验证(K-Fold
Cross-Validation)是一种在机器学习中常用的模型评估技术,用于估计模型的性能和泛化能力。它的主要作用是在有限的数据集上对模型进行评估,以便更准确地了解模型在新数据上的表现。

K折交叉验证的基本思想是将原始数据集分成K个子集(折),然后依次将每个子集作为验证集,其他K-1个子集作为训练集,进行K次训练和验证。每次验证后,计算模型在验证集上的性能指标,如准确率、精确率、召回率等。最后,将K次验证的性能指标平均,作为模型在整个数据集上的性能估计。

K折交叉验证的作用包括:

  1. 模型性能评估: K折交叉验证可以更准确地评估模型在数据集上的性能,避免因数据分布不均匀而导致评估结果不准确的问题。
  2. 泛化能力估计: 通过在不同的训练集和验证集上进行多次评估,可以更好地估计模型的泛化能力,即模型在新数据上的表现。
  3. 减少过拟合: K折交叉验证可以帮助检测模型是否出现过拟合问题。如果模型在训练集上表现很好,但在验证集上表现较差,可能存在过拟合。
  4. 参数调优: 在每一轮交叉验证中,可以使用不同的参数设置来训练模型,以找到在验证集上表现最好的参数组合。
  5. 数据利用率: K折交叉验证充分利用了数据集中的所有样本,因为每个样本都会在不同的折中被用作训练和验证。

总之,K折交叉验证是一种有助于评估和改进模型性能的重要技术,尤其在数据有限的情况下,它能更准确地估计模型在新数据上的表现。
在这里插入图片描述

1.数据准备

使用交叉验证前,需要把数据准备为yolo格式,不知道如何数据准备的朋友可以看下这篇文章:YOLOv8教程系列:一、使用自定义数据集训练YOLOv8模型(详细版教程,你只看一篇->调参攻略),包含环境搭建/数据准备/模型训练/预测/验证/导出等
.
├── ./data
│ ├── ./data/Annotations
│ │ ├── ./data/Annotations/fall_0.xml
│ │ ├── ./data/Annotations/fall_1000.xml
│ │ ├── ./data/Annotations/fall_1001.xml
│ │ ├── ./data/Annotations/fall_1002.xml
│ │ ├── ./data/Annotations/fall_1003.xml
│ │ ├── ./data/Annotations/fall_1004.xml
│ │ ├── …
│ ├── ./data/images
│ │ ├── ./data/images/fall_0.jpg
│ │ ├── ./data/images/fall_1000.jpg
│ │ ├── ./data/images/fall_1001.jpg
│ │ ├── ./data/images/fall_1002.jpg
│ │ ├── ./data/images/fall_1003.jpg
│ │ ├── ./data/images/fall_1004.jpg
│ │ ├── …
│ ├── ./data/ImageSets
│ └── ./data/labels
│ │ ├── ./data/images/fall_0.txt
│ │ ├── ./data/images/fall_1000.txt
│ │ ├── ./data/images/fall_1001.txt
│ │ ├── ./data/images/fall_1002.txt
│ │ ├── ./data/images/fall_1003.txt
│ │ ├── ./data/images/fall_1004.txt
│ ├── ./data/classes.yaml
其中,特别要注意的一点是,需要新建个classes.yaml的文件,然后将自己的标签按序填写,如下所示:

names:0: your_label_11: your_label_2

2.代码准备

下面代码可以什么都不用改直接运行,前提是按我的数据格式,这个代码放在data的上层目录中

import datetime
import shutil
from pathlib import Path
from collections import Counter
import osimport yaml
import numpy as np
import pandas as pd
from ultralytics import YOLO
from sklearn.model_selection import KFold# 定义数据集路径
dataset_path = Path('./data')  # 替换成你的数据集路径# 获取所有标签文件的列表
labels = sorted(dataset_path.rglob("*labels/*.txt"))  # 所有标签文件在'labels'目录中# 获取当前文件的绝对路径
current_file_path = os.path.abspath(__file__)# 获取当前文件所在的文件夹路径(即当前文件的根目录)
root_directory = os.path.dirname(current_file_path)print("当前文件运行根目录:", root_directory)# 从YAML文件加载类名
yaml_file = 'data/classes.yaml'
with open(yaml_file, 'r', encoding="utf8") as y:classes = yaml.safe_load(y)['names']
cls_idx = sorted(classes.keys())# 创建DataFrame来存储每张图像的标签计数
indx = [l.stem for l in labels]  # 使用基本文件名作为ID(无扩展名)
labels_df = pd.DataFrame([], columns=cls_idx, index=indx)# 计算每张图像的标签计数
for label in labels:lbl_counter = Counter()with open(label, 'r') as lf:lines = lf.readlines()for l in lines:# YOLO标签使用每行的第一个位置的整数作为类别lbl_counter[int(l.split(' ')[0])] += 1labels_df.loc[label.stem] = lbl_counter# 用0.0替换NaN值
labels_df = labels_df.fillna(0.0)# 使用K-Fold交叉验证拆分数据集
ksplit = 5
kf = KFold(n_splits=ksplit, shuffle=True, random_state=20)  # 设置random_state以获得可重复的结果
kfolds = list(kf.split(labels_df))
folds = [f'split_{n}' for n in range(1, ksplit + 1)]
folds_df = pd.DataFrame(index=indx, columns=folds)# 为每个折叠分配图像到训练集或验证集
for idx, (train, val) in enumerate(kfolds, start=1):folds_df[f'split_{idx}'].loc[labels_df.iloc[train].index] = 'train'folds_df[f'split_{idx}'].loc[labels_df.iloc[val].index] = 'val'# 计算每个折叠的标签分布比例
fold_lbl_distrb = pd.DataFrame(index=folds, columns=cls_idx)
for n, (train_indices, val_indices) in enumerate(kfolds, start=1):train_totals = labels_df.iloc[train_indices].sum()val_totals = labels_df.iloc[val_indices].sum()# 为避免分母为零,向分母添加一个小值(1E-7)ratio = val_totals / (train_totals + 1E-7)fold_lbl_distrb.loc[f'split_{n}'] = ratio# 创建目录以保存分割后的数据集
save_path = Path(dataset_path / f'{datetime.date.today().isoformat()}_{ksplit}-Fold_Cross-val')
save_path.mkdir(parents=True, exist_ok=True)# 获取图像文件列表
images = sorted((dataset_path / 'images').rglob("*.jpg"))  # 更改文件扩展名以匹配你的数据
ds_yamls = []# 循环遍历每个折叠并复制图像和标签
for split in folds_df.columns:# 为每个折叠创建目录split_dir = save_path / splitsplit_dir.mkdir(parents=True, exist_ok=True)(split_dir / 'train' / 'images').mkdir(parents=True, exist_ok=True)(split_dir / 'train' / 'labels').mkdir(parents=True, exist_ok=True)(split_dir / 'val' / 'images').mkdir(parents=True, exist_ok=True)(split_dir / 'val' / 'labels').mkdir(parents=True, exist_ok=True)# 创建数据集的YAML文件dataset_yaml = split_dir / f'{split}_dataset.yaml'ds_yamls.append(dataset_yaml.as_posix())split_dir = os.path.join(root_directory, split_dir.as_posix())with open(dataset_yaml, 'w') as ds_y:yaml.safe_dump({'path': split_dir,'train': 'train','val': 'val','names': classes}, ds_y)
print(ds_yamls)# 将文件路径保存到一个txt文件中
with open('data/file_paths.txt', 'w') as f:for path in ds_yamls:f.write(path + '\n')# 为每个折叠复制图像和标签到相应的目录
for image, label in zip(images, labels):for split, k_split in folds_df.loc[image.stem].items():# 目标目录img_to_path = save_path / split / k_split / 'images'lbl_to_path = save_path / split / k_split / 'labels'# 将图像和标签文件复制到新目录中# 如果文件已存在,可能会抛出SamefileErrorshutil.copy(image, img_to_path / image.name)shutil.copy(label, lbl_to_path / label.name)

运行代码后,会在data目录下生成一个文件夹,里面有5种不同划分的数据集

3.开始训练

下面的代码放在和上面代码的同级目录中,训练参数可以根据自己情况进行调整

from ultralytics import YOLOweights_path = 'checkpoints/yolov8s.pt'
model = YOLO(weights_path, task='train')
ksplit = 5
# 从文本文件中加载内容并存储到一个列表中
ds_yamls = []
with open('data/file_paths.txt', 'r') as f:for line in f:# 去除每行末尾的换行符line = line.strip()ds_yamls.append(line)# 打印加载的文件路径列表
print(ds_yamls)results = {}
for k in range(ksplit):dataset_yaml = ds_yamls[k]model.train(data=dataset_yaml, batch=6, epochs=2, imgsz=1280, device=0, workers=8, single_cls=False, ) 

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/106942.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaScript(笔记)

目录 Hello World JavaScript 的变量 JavaScript 动态类型 隐式类型转换 JavaScript 数组 JavaScript 函数 JavaScript 中变量的作用域 对象 DOM 选中页面元素 事件 获取 / 修改元素内容 获取 / 修改元素属性 获取 / 修改 表单元素属性 获取 / 修改样式属性 新…

Java版B/S架构 智慧工地源码,PC、移动、数据可视化智慧大屏端源码

智慧工地是什么?智慧工地主要围绕绿色施工、安全管控、劳务管理、智能管理、集成总控等方面,帮助工地解决运营、管理方面各个难点痛点。在互联网的加持下促进项目现场管理的创新与发展,实现工程管理人员与工程施工现场的整合,构建…

[机缘参悟-102] :IT人 - 管理的本质?管理人与从事技术的本质区别?人性、冰山模型、需求层次模型

感悟: 管理的本质是:学习各种管理理论、方法、技能,克服自身的人性缺点、预防他人人性的恶点、利用他人的人性特点拿到结果,从而完成组织、管理者的上司、管理者自身、管理者下属的目标。管理中的问题,80%以上都人性问…

rtmp直播

技术要求:nginxnginx-rtmpffmpegVLC 跟着大佬走的: 传送门 准备工作: 首先需要一台公网ip的服务器 这是使用天翼云的弹性云主机:免费试用1个月 天翼云官网 点击关机,更多里面选择重置密码, 默认用户名为…

根据案例写PLC程序-红绿灯控制

案例: 1、南北方向红灯点亮30s后熄灭; 2、在点亮南北方向红灯的同时点亮东西方向绿灯,并在点亮25s后,以0.5s熄灭0.5s点亮的时间闪烁3次后熄灭; 3、在东西方向绿灯熄灭后,东西方向黄灯点亮2s后熄灭&#xff…

数据库的增量备份与差异备份

在当今数字时代,数据已经成为公司的主要资产。为了维护这些珍贵的数据,公司通常会采取各种数据保护措施,其中增量备份是一种很有效的方法。本文将详细介绍什么是数据库的增量备份,以及如何帮助企业更有效地维护数据。  我们需要…

HTML+CSS 查漏补缺

目录 1,HTML1,尺寸的百分比1,普通元素2,绝对(固定)定位元素3,常见百分比 2,form 表单元素1,form2,button3,label4,outline5&#xff0…

Multisim软件安装包分享(附安装教程)

目录 一、软件简介 二、软件下载 一、软件简介 Multisim软件是一款电路仿真和设计软件,由美国国家仪器公司(National Instruments)开发。它提供了一个交互式的图形界面,使用户能够轻松地构建和仿真电路。以下是Multisim软件的详…

《扩散模型 从原理到实战》Hugging Face (一)

文章目录 前言第一章 扩散模型简介1.1 扩散模型的原理1.1.1 生成模型1.1.2 扩散过程 前言 Hugging Face最近出版了第一本中文书籍《扩散模型 从原理到实战》,其中内容关于扩散模型(Diffusion Model),和AIGC相关的内容较多&#x…

2023企业网盘产品排行榜揭晓:选择最适合你的企业网盘工具

企业网盘产品已成为企业文件管理协作的主要选择之一,无论是在文件管理方面,还是团队协作上,企业网盘都表现优秀。为了帮助企业选到心怡的企业网盘产品,我们综合了不同的产品测评网站意见,整理了2023企业网盘产品排行榜…

【游戏开发教程】Unity Cinemachine快速上手,详细案例讲解(虚拟相机系统 | 新发出品 | 良心教程)

文章目录 一、前言二、插件下载三、案例1:第三人称自由视角,Free Look character场景1、场景演示2、组件参数2.1、CinemachineBrain:核心2.2、CinemachineFreeLook:第三人称自由视角相机2.2.1、设置Follow:跟随2.2.2、…

phpstorm动态调试

首先在phpstudy搭建好网站,在管理拓展开启xdebug拓展 查看php.ini配置已经更改 需要增添修改一下设置 [Xdebug] zend_extensionD:/phpstudy_pro/Extensions/php/php5.6.9nts/ext/php_xdebug.dll xdebug.collect_params1 xdebug.collect_return1 xdebug.auto_trace…

[Open-source tool] 可搭配PHP和SQL的表單開源工具_Form tools(1):簡介和建置

Form tools是一套可搭配PHP和SQL的表單開源工具,可讓開發者靈活運用,同時其有數個表單模板和應用模組供挑選,方便且彈性。Form tools已開發超過20年,為不同領域的需求者或開發者提供一個自由和開放的平台,使他們可建構…

STM32f103入门(1) 配置点亮Led灯

1 安装keil5 MDK 双击 MDK524a.EXE安装成功后管理员模式打开CID复制到破解软件 选择ARM生成代码复制到New License ID CodeAdd LIC破解完毕 2安装stm32芯片 可找资料自行安装 如下 3 创建工程 Project->new project 本篇芯片为stm32f103保存到自定义文件夹下在根目录下…

【SkyWalking】分布式服务追踪与调用链系统

1、基本介绍 SkyWalking是一个开源的观测平台,官网:Apache SkyWalking; 可监控:分布式追踪调用链 、jvm内存变化、监控报警、查看服务器基本配置信息。 2、SkyWalking架构原理 在整个skywalking的系统中,有三个角色&am…

WPS右键新建没有docx pptx xlsx 修复

解决wps右键没有新建文档的问题 右键没有新建PPT和Excel 1 wps自带的修复直接修复没有用 以上不管咋修复都没用 2 先编辑注册表 找到 HKEY_CLASSES_ROOT CTRLF搜文件扩展名 pptx docx xlsx 新建字符串 三种扩展名都一样操作 注册表编辑之后再次使用wps修复 注册组件&am…

K8S如何部署ZooKeeper以及如何进行ZooKeeper的平滑替换

前言 在之前的章节中,我们已经成功地将Dubbo项目迁移到了云环境。在这个过程中,我们选择了单机ZooKeeper作为注册中心。接下来,我们将探讨如何将单机ZooKeeper部署到云端,以及在上云过程中可能遇到的问题及解决方案。 ZooKeeper…

picGo+gitee+typora设置图床

picGogiteetypora设置图床 picGogitee设置图床下载picGo软件安装picGo软件gitee操作在gitee中创建仓库在gitee中配置私人令牌 配置picGo在插件设置中搜索gitee插件并进行下载 TyporapicGo设置Typora 下载Typora进行图像设置 picGogitee设置图床 当我了解picGogitee可以设置图床…

Vue3 [Day11]

Vue3的优势 create-vue搭建Vue3项目 node -v npm init vuelatest npm installVue3项目目录和关键文件 Vetur插件是Vue2的 Volarr插件是Vue3的 main.js import ./assets/main.css// new Vue() 创建一个应用实例 > createApp() // createRouter() createStore() // 将创建实…

TensorFlow中slim包的具体用法

TensorFlow中slim包的具体用法 1、训练脚本文件(该文件包含数据下载打包、模型训练,模型评估流程)3、模型训练1、数据集相关模块:2、设置网络模型模块3、数据预处理模块4、定义损失loss5、定义优化器模块 本次使用的TensorFlow版本…