伦敦银和伦敦金的区别

伦敦银河伦敦金并称贵金属交易市场的双璧,一般投资贵金属的投资者其实不是交易伦敦金就是交易伦敦银。相信经过一段时间的学习和投资,不少投资者都能分辨二者的区别。下面我们就来谈谈伦敦银和伦敦金有什么异同,他们在投资上是否有差别。

 

交易合约细则不同

现货黄金跟现货白银的不同首先在于交易细则的不同,下面就来具体看看:

由于伦敦金和伦敦银的交易保证金都是每手2%,但其他方面,包括最低波动价格、最少交易量、点差等等,都是不同的,所以投资者需要注意。

波动性不同

由于伦敦银的市场规模和流动性不够伦敦金大,再加上工业与储值用途之间的需求波动,白银的的波动性有时候是比黄金高的。

受影响因素不同

白银的需求很大一部分是源自工业,而黄金则主要源自投资和珠宝需求,因此黄金受货币方面的因素变化影响较大,而白银则受工业生产力、制造业需求影响较大。但是,双方又同受国际地缘政治影响,并且对美国的经济数据特别敏感,毕竟两者都是以美元作为计价。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/107684.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

KMP算法开荒

文章目录 一 、前言二、 暴力解法三、KMP算法原理3.1 自动子串的指针3.2 跳过多少个字符3.3 next数组 - 暴力3.4 next数组 - 求解 四 KMP实现 一 、前言 字符串匹配 import re print(re.search(www, www.runoob.com).span()) # 在起始位置匹配 print(re.search(com, www.run…

【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_PATH_OPTIMIZER

文章目录 前言PIECEWISE_JERK_PATH_OPTIMIZER功能简介PIECEWISE_JERK_PATH_OPTIMIZER相关配置PIECEWISE_JERK_PATH_OPTIMIZER总体流程OptimizePathpiecewise_jerk_problem二次规划问题标准形式定义优化变量定义目标函数设计约束OptimizeFormulateProblem计算QP系数矩阵Calculat…

【C++】AVL树(高度平衡二叉树)

AVL树 概念AVL树节点定义AVL树节点插入AVL树四种旋转情况左单旋右单旋先左单旋再右单旋先右单旋后左单旋 元素的插入及控制平衡判断最后节点是否平衡 概念 二叉搜索树虽然可以缩短查找的效率,但如果数据有序或者接近有序二叉搜索树将退化为单支树,查找元…

(mybatis与spring集合

mybatis与spring集合 一、Spring集成MyBatis1.1. pom依赖1.2. 配置文件1.3. Spring整合MyBatis1.3.1. 配置自动扫描JavaBean1.3.2. 配置数据源1.3.3. 配置session工厂1.3.4. 配置mapper扫描接口1.3.5. 配置事务管理器1.3.6. 配置AOP自动代理1.4. 测试 二、Spring集成PageHelper…

Firefox(火狐),使用技巧汇总,问题处理

本文目的 说明火狐如何安装在C盘之外的盘,即定制安装路径。如何将同步功能切换到本地服务上。默认是国际服务器。安装在C盘之后如何解决,之前安装的扩展无法自动同步的问题。扩展或插件失效问题解决方案。顺带分享一下,火狐的一些比较好用的…

经管博士科研基础【4】排队论M/M/1公式

公式来源于B站睿智小课堂: 上面的公式要学会推导,具体推导过程也要学习一下【可见B站睿智小课堂】 具体推导思路是: 【1】先求解得到系统的队长L:这需要用到马尔科夫排队过程的相关知识,也就是说仅仅在排队过程是马尔…

机器学习简介

文章目录 引言1. 从找规律说起2. 机器学习应用2.1 有监督学习2.2 无监督学习2.2.1 聚类2.2.2 降维 3. 机器学习一般流程4. 机器学习常用概念5. 深度学习简介5.1 引入 -- 猜数字5.2 深度学习5.2.1 隐含层/中间层5.2.2 随机初始化5.2.3 损失函数5.2.4 导数与梯度5.2.5 梯度下降5.…

VScode 编辑器报错: ‘HelloWorld‘ is declared but its value is never read.

.vue文件被标识红色波浪线;提示: HelloWorld is declared but its value is never read. 问题原因: 因为vue3已经不支持vetur插件。 1、在扩展里面进行搜索Vetur插件,进行禁用或卸载; 2、在 VScode扩展里面搜索并下载…

浅谈大数据智能审计如何助力审计工作

随着互联网大数据的持续发展,大数据审计近年来面对着相等的机遇和挑战。那么,如果利用大数据等相关技术对审计工作作出突出贡献,单位和企业又该从何入手做好大数据审计工作应用,这些都成为每位审计人员将要面临的重要问题。 1. 政…

使用WebDriver采样器将JMeter与Selenium集成

第一步: 在JMeter中添加Selenium / WebDriver插件 第二步: 创建一条测试计划–添加线程组 添加配置元素 - jpgc - WebDriver Sampler 添加配置元素 - jpgc - Chrome Driver Config 并且添加监听器查看结果树 第三步: 下载 chromedriver…

Unity 3D之 利用Vector3 计算移动方向,以及实现位移多少

文章目录 先分析代码,从代码中了解Vector3 moveDirection new Vector3(10f, 0f, 100f);合法吗Vector3 moveDirection new Vector3 (xf,yf,zf)不是用来表示三维坐标的怎么表示在某个方向的位移 先分析代码,从代码中了解 这段代码是一个在游戏开发中常见…

Linux 多线程基础

文章目录 前言一、多线程基础函数1. pthread_create2. pthread_self3. pthread_exit4. pthread_join5. pthread_cancel6. pthread_detach 二、线程间的共享数据三、多线程 &#xff0c;进程对比总结 前言 一、多线程基础函数 1. pthread_create 创建新的线程。 #include <…

数组名和函数名是指针?指针和引用底层一样?

在2023/8/26日晚上&#xff0c;我看到一个所谓“典”的视频&#xff0c;一开始还没太在意&#xff0c;后面想了想发现我貌似也一直犯了以下的错误&#xff0c;而错误的原因在于我在新手阶段学习C/C并不是查阅文档扎好脚步学习的&#xff0c;而是被铺天盖地的新手学习基础教程里…

基于Java+SpringBoot+Vue前后端分离纺织品企业财务管理系统设计和实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

uni-app 分不清的全局变量this, uni, $u, vm, uni.$u, this.$u

项目引入了uview,并将uview所有模块指给uniapp全局变量uni uni.$u$u 在登录页面&#xff0c;或者APP.vue打印以下变量&#xff1a; this, uni, $u, vm, uni.$u, this.$u

2023科隆游戏展:虚幻5游戏百花齐放,云渲染助力虚幻5高速渲染

8月23日&#xff0c;欧洲权威级游戏展示会——科隆游戏展拉开帷幕。今年的参展游戏也相当给力&#xff0c;数十款游戏新预告片在展会上公布&#xff0c;其中有不少游戏使用虚幻5引擎制作&#xff0c;开创了游戏开发新纪元。 虚幻5游戏百花齐放&#xff0c;渲染堪比电影级效果 …

2023年国赛 高教社杯数学建模思路 - 案例:随机森林

文章目录 1 什么是随机森林&#xff1f;2 随机深林构造流程3 随机森林的优缺点3.1 优点3.2 缺点 4 随机深林算法实现 建模资料 ## 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 什么是随机森林&#xff…

2023年国赛 高教社杯数学建模思路 - 案例:粒子群算法

文章目录 1 什么是粒子群算法&#xff1f;2 举个例子3 还是一个例子算法流程算法实现建模资料 # 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 什么是粒子群算法&#xff1f; 粒子群算法&#xff08;Pa…

陕西广电 HG6341C FiberHome烽火 光猫获取超级密码 改桥接模式 提升网速

光猫默认的路由模式实测在100M宽带下只能跑到60M左右&#xff0c;只有改成桥接模式才能跑满&#xff0c;不损失性能。但是改桥接需要给运营商打电话&#xff0c;有的时候不想麻烦他们&#xff0c;这时获取超级密码进行更改就是一个不错的选择了 分析 之前写了一篇HGU B2 光猫的…