Matlab 使用经验分享(常用函数介绍;矩阵常见计算)

Matlab 使用经验分享

大家好!最近有很多朋友询问我关于 Matlab 的使用,于是我决定写一篇博客来分享一下我的经验。对于数学和编程爱好者来说,Matlab 是一个非常有用的工具。我自己在数学实验和数学建模竞赛中也经常使用它。那么,为什么 Matlab 这么受欢迎呢?

Matlab 的起源

MATLAB 是美国MathWorks 公司自20 世纪 80 年代中期推出的数学软件, 优秀的数值 计算能力和卓越的数据可视化能力使其很快在数学软件中脱颖而出。

为什么选择 Matlab?

由于 Maltab 编程方便,有大量内部函数和工具箱可以使用,作图也十分方便,因此在 数学实验和数学建模竞赛中,我们就常使用 Matlab 作为我们的编程工具。

一些常用函数介绍

  • 三角函数
    • sin: --正弦
    • sinh: 双曲正弦
    • asin: -反正弦
    • cosh: 双曲余弦
    • acos: -反余弦
    • atanh: --反双曲正切
  • 指数函数与对数函数
    • exp: -指数
    • log: --e 为底的对数
    • log10: 常用对数
    • sqrt: --平方根
  • 与复数有关的函数
    • abs: -模或绝对值
    • angle: 幅角
    • conj: 复共轭
    • imag: 虚部
    • real: --实部
  • 舍入函数及其它数值函数
    • fix: – 向 0 舍入
    • floor: 向负无穷舍入
    • ceil: – 向正无穷舍入
    • sign(x): -符号函数
    • min(x): 向量 x 的元素的最小值
    • max(x): 向量 x 的元素的最大值
    • mean(x): 向量 x 的元素的平均值
    • median(x): 向量 x 的元素的中位数
    • std(x): 向量 x 的元素的标准差
    • diff(x): 向量 x 的相邻元素的差
    • sort(x): 对向量 x 的元素进行排序
    • length(x): 向量 x 的元素个数
    • norm(x): 向量 x 的 Euclidean 长度
    • sum(x): 向量 x 的元素总和
    • prod(x): 向量 x 的元素连乘积
    • cumsum(x): 向量 x 的累计元素总和

矩阵常见计算

矩阵输入

矩阵输入最简单的方法是把矩阵的元素直接排列在方括号中。每行内的元素间用空格或逗号隔开,行与行之间用分号隔开。例如:

A=[1,4,7;3,6,9;6,7,4]

矩阵的转置

矩阵的转置用符号´来表示。例如:

A=[1,4,7;3,6,9;6,7,4];
B=

矩阵的加减

矩阵的加减使用的是”+”和”-“运算符。进行矩阵加减运算必须是同型矩阵。例如:
A=[1,3,6;4,5,7;7,8,9];
B=[3,5,7;2,4,6;1,3,9];
C=A+B
以下是关于矩阵与标量进行加减运算的内容:
矩阵可以与一个数进行加减运算,运算法则是对应每个元素加减同一个数。例如:

Z=C-1

结果为:
Z =
3
5

矩阵乘法

矩阵乘法用符号*表示。要求前一矩阵的列数与后一矩阵的行数相同。例如:

A=[1,4,7;2,5,8];
B=[4,5,9;1,7,8;3,2,1];
C=A*B

在 Matlab 中,还可以进行矩阵与数的乘法。其规则是矩阵的每个元素与该数相乘。例如:

A=[1,5,8;2,6,9];
B=3*A

结果为:
B =
3 15 24
6 18 27

矩阵的行列式

求方阵 A 的行列式,用 det(A) 表示。例如:
A=[1,3,6;2,5,8;3,9,11];
Z=det(A)

矩阵求逆

非奇异矩阵 ( A ) 的求逆用 inv(A) 表示。例如:

A=[1,3,6;2,5,8;3,9,11];
Z=inv(A)

结果为:
Z =
-2.4286 3.0000 -0.8571
0.2857 -1.0000 0.5714

以下是关于如何验证矩阵的逆以及如何使用逆矩阵来解方程组的内容:
要验证矩阵的逆是否正确,可以计算 ( C = A \times Z )。例如:

C =1.0000 0 -0.00000 1.0000 -0.0000...

利用逆矩阵可以解方程组。例如:
AX=b
其中:
A=[1,3,6;…
以下是关于如何使用矩阵来解方程组和函数拟合的内容:
例如,给定以下方程组:

A=[1,3,6;2,5,8;3,9,11];
b=[3,6,7]';
X=inv(A)*b

结果为:
X =
4.7143
-1.1429
0.2857
或者,使用 X=A\b 也可以求解。此外,X=A\b 还可以求解矛盾方程组。

函数拟合

假设因变量 y 与自变量 x 之间存在以下关系:
y = a + b * exp(-x)
观测数据为:
| x | 0.0 | 0.3 | 0.8 | 1.1 | 1.6 | 2.3 |
| y | 0.82| 0.72| 0.63| 0.60| 0.55| 0.5 |
基于这些数据,我们可以建立矛盾方程组 AX=y,其中X=[a,b] ′
以下是关于如何使用 m 文件进行函数拟合的内容:
我们可以创建以下 m 文件来进行拟合:
t=[0.0, 0.3, 0.8, 1.1, 1.6, 2.3]‘;
y=[0.82, 0.72, 0.63, 0.60, 0.55, 0.5]’;
A=[ones(size(t)),exp(-t)];
X=inv(A’*A)*A’*y;
或者
X=A\y;
计算结果为:
X = 0.4760 0.3413
即:a=0.4760,b=0.3413。
函数拟合为:y=0.476+0.3413×e^x 。
我们可以使用图形来表示结果。
在这里插入图片描述
以下是 M 文件的内容:
M 文件如下
t=[0.0 0.3 0.8 1.1 1.6 2.3]’
y=[0.82 0.72 0.63 0.60 0.55 0.5]’
A=[ones(size(t)),exp(-t)]
x=inv(A’*A)*A’y
n=500
tt=zeros(n,1);
yy=zeros(n,1);
dt=2.3/n;
for i=1:n
tt(i)=i
dt;
yy(i)=x(1)+x(2)*exp(-tt(i));
end
plot(t,y,‘*b’,tt,yy,‘r’)
b—表示蓝色,代表原数据
r-----表示红色,代表拟合曲线

矩阵特征值

如果 A 为方阵,满足 AX=λX 的 λ 称为 A 的特征值,X 称为 A 的特征向量。计算 A 的特征值用 eig(A)表示。
例如:
A=[1 3 6; 2 5 8; 3 6 8];
Z=eig(A)
结果为:
Z =
15.2382
-1.3365
0.0982
如要同时求出特征向量,采用表达式 [X,V]=eig(A)。
结果为:
X = -0.4135 -0.6094
-0.6765
V =
15.2382
0
0

需要直接看PDF文件,直接在博主主页的资源里免费下载,因为博主写的时候可能个别的会有缺漏,需要看原文档的直接下载即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/108491.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【JavaEE】面向切面编程AOP是什么-Spring AOP框架的基本使用

【JavaEE】 AOP(1) 文章目录 【JavaEE】AOP(1)1. Spring AOP 是什么1.1 AOP 与 Spring AOP1.2 没有AOP的世界是怎样的1.3 AOP是什么 2. Spring AOP 框架的学习2.1 AOP的组成2.1.1 Aspect 切面2.1.2 Pointcut 切点2.1.3 Advice 通知…

【广州华锐互动】VR高校虚拟实验教学平台提供丰富的资源支持,提高教学效果

随着科技的不断进步,虚拟现实(VR)技术已经逐渐渗透到各个领域,其中包括教育。 广州华锐互动利用VR虚拟现实技术打造的VR高校虚拟实验教学平台,是一种新型的教学工具,它提供了一个在线的教学资源管理平台,包含教学平台、…

深度学习在自然语言处理中的十大应用领域

文章目录 1. 机器翻译2. 文本分类3. 命名实体识别4. 问答系统5. 文本生成6. 情感分析7. 语言生成与处理8. 信息检索与摘要9. 文本纠错与修复10. 智能对话系统总结 🎉欢迎来到AIGC人工智能专栏~深度学习在自然语言处理中的十大应用领域 ☆* o(≧▽≦)o *☆嗨~我是IT陈…

Git企业开发控制理论和实操-从入门到深入(七)|企业级开发模型

前言 那么这里博主先安利一些干货满满的专栏了! 首先是博主的高质量博客的汇总,这个专栏里面的博客,都是博主最最用心写的一部分,干货满满,希望对大家有帮助。 高质量博客汇总 然后就是博主最近最花时间的一个专栏…

LAMP介绍与配置

一.LAMP 1.1.LAMP架构的组成 CGI(通用网关接口)和FastCGI(快速公共网关接口)都是用于将Web服务器与后端应用程序(如PHP、Python等)进行交互的协议/接口。 特点 CGI FastCGI 运行方式 每个请求启动…

android外卖点餐界面(期末作业)

效果展示&#xff1a; AndroidMainFest.xml <?xml version"1.0" encoding"utf-8"?> <manifest xmlns:android"http://schemas.android.com/apk/res/android"xmlns:tools"http://schemas.android.com/tools"><a…

Hystrix: Dashboard流监控

接上两张服务熔断 开始搭建Dashboard流监控 pom依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocat…

OpenGL —— 2.5、绘制第一个三角形(附源码,glfw+glad)(更新:纹理贴图)

源码效果 C源码 纹理图片 需下载stb_image.h这个解码图片的库&#xff0c;该库只有一个头文件。 具体代码&#xff1a; vertexShader.glsl #version 330 corelayout(location 0) in vec3 aPos; layout(location 1) in vec3 aColor; layout(location 2) in vec2 aUV;out ve…

pnpm安装包管理工具

pnpm安装包管理工具 pnpm代表performant npm&#xff08;高性能的npm&#xff09;&#xff0c;同npm和Yarn&#xff0c;都属于Javascript包管理安装工具&#xff0c;它较npm和Yarn在性能上得到很大提升&#xff0c;被称为快速的&#xff0c;节省磁盘空间的包管理工具。 pnpm…

计算机视觉:深层卷积神经网络的构建

本文重点 上一节课程中我们学习了单卷积层的前向传播,本次课程我们构建一个具有三个卷积层的卷积神经网络,然后从输入(39*39*3)开始进行三次卷积操作,我们来看一下每次卷积的输入和输出维度的变化。 第一层 第一层使用3*3*3的过滤器来提取特征,那么f[1]=3,然后步长s[…

电脑视频编辑软件前十名 电脑视频编辑器怎么剪辑视频

对于大多数创作者而言&#xff0c;视频后期工作基本都是在剪辑软件上进行的。一款适合自己的视频剪辑软件&#xff0c;能够节省出大量的时间和金钱成本&#xff0c;让剪辑师省钱又省心。那么有关电脑视频编辑软件前十名&#xff0c;电脑视频编辑器怎么剪辑视频的相关问题&#…

9.阿里Sentinel哨兵

1.Sentinel Sentinel&#xff08;哨兵&#xff09;是由阿里开源的一款流量控制和熔断降级框架&#xff0c;用于保护分布式系统中的应用免受流量涌入、超载和故障的影响。它可以作为微服务架构中的一部分&#xff0c;用于保护服务不被异常流量冲垮&#xff0c;从而提高系统的稳定…

uview ui 1.x ActonSheet项太多,设置滚动

问题&#xff1a;ActionSheet滚动不了。 使用uview ui &#xff1a;u-action-sheet, 但是item太多&#xff0c;超出屏幕了&#xff0c; 查了一下文档&#xff0c;并没有设置滚动的地方。 官方文档&#xff1a;ActionSheet 操作菜单 | uView - 多平台快速开发的UI框架 - uni-a…

Zebec Protocol:模块化 L3 链 Nautilus Chain,深度拓展流支付体系

过去三十年间&#xff0c;全球金融科技领域已经成熟并迅速增长&#xff0c;主要归功于不同的数字支付媒介的出现。然而&#xff0c;由于交易延迟、高额转账费用等问题愈发突出&#xff0c;更高效、更安全、更易访问的支付系统成为新的刚需。 此前&#xff0c;咨询巨头麦肯锡的一…

机器学习算法示例的收集;MetaAI编码工具Code Llama;“天工AI搜索”首发实测

&#x1f989; AI新闻 &#x1f680; Meta推出新一代AI编码工具Code Llama&#xff0c;助力程序员提高开发效率 摘要&#xff1a;Meta推出Code Llama&#xff0c;这是一个基于Llama 2语言模型打造的AI编码工具&#xff0c;能够生成新的代码并调试人类编写的工作。Code Llama可…

解决MASM32代码汇编出错: error A2181: initializer must be a string or single item

最近用MASM32编程更新SysInfo&#xff0c;增加对IPv6连接信息的收集&#xff0c;使用到了 typedef struct _MIB_TCP6ROW_OWNER_MODULE {UCHAR ucLocalAddr[16];DWORD dwLocalScopeId;DWORD dwLocalPort;UCHAR ucRemoteAddr[16];DWORD …

java 高级面试题整理(薄弱技术-2023)

session 和cookie的区别和联系 session1.什么是session Session是另一种记录客户状态的机制&#xff0c;不同的是Cookie保存在客户端浏览器中&#xff0c;而Session保存在服务器上。客户端浏览器访问服务器的时候&#xff0c;服务器把客户端信息以某种形式记录在服务器上。这就…

【golang】go语句执行规则(goroutine)(上)

Don’t communicate by sharing memory;share memory by communicating. 从Go语言编程的角度解释&#xff0c;这句话的意思就是&#xff1a;不要通过共享数据来通讯&#xff0c;恰恰相反&#xff0c;要以通讯的方式共享数据。 进程和线程 进程&#xff0c;描述的就是程序的执…

数据结构队列的实现

本章介绍数据结构队列的内容&#xff0c;我们会从队列的定义以及使用和OJ题来了解队列&#xff0c;话不多说&#xff0c;我们来实现吧 队列 1。队列的概念及结构 队列&#xff1a;只允许在一端进行插入数据操作&#xff0c;在另一端进行删除数据操作的特殊线性表&#xff0c;…

代码随想录打卡—day42—【DP】— 8.27 01背包基础

1 01背包基础 背包概述&#xff1a; 1.1 01背包是什么 有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i]&#xff0c;得到的价值是value[i] 。每件物品只能用一次&#xff0c;求解将哪些物品装入背包里物品价值总和最大。 1.2 01背包二维数组 二维数组还…