Scikit-Learn中的特征选择和特征提取详解

414ab15dcf604c65ae1d2317786183a7.png


 概要

机器学习在现代技术中扮演着越来越重要的角色。不论是在商业界还是科学领域,机器学习都被广泛地应用。在机器学习的过程中,我们需要从原始数据中提取出有用的特征,以便训练出好的模型。但是,如何选择最佳的特征是一个关键问题。在本文中,我们将探讨特征选择和特征提取两种方法,并讨论哪种方法更好。


 

什么是特征选择和特征提取?

在介绍特征选择和特征提取之前,我们需要先了解一下什么是特征。在机器学习中,特征是指原始数据中可以用来训练模型的属性或特性。例如,在一组数字中,我们可以将每个数字视为一个特征。在图像识别中,我们可以将图像的像素点视为特征。

特征选择和特征提取都是从原始数据中提取有用的特征的方法。特征选择是指从原始数据中选择最重要的特征,而特征提取是指从原始数据中提取新的特征,以便训练更好的模型。现在让我们来详细了解这两种方法。

特征选择

特征选择是从原始数据中选择最重要的特征,以便训练更好的模型。特征选择可以帮助我们降低模型的复杂度,提高模型的准确性。在特征选择中,我们通常会根据特征的重要性来选择最佳的特征。通常,特征的重要性是通过以下方法来计算的:

  • 方差分析(ANOVA):用于比较不同特征之间的差异性。

  • 互信息:用于衡量特征之间的依赖关系。

  • 皮尔逊相关系数:用于衡量特征之间的线性相关性。

Scikit-Learn库提供了许多特征选择方法,例如方差选择、卡方检验、互信息等。以下是一个使用方差选择方法来选择最佳特征的示例代码:

from sklearn.feature_selection import VarianceThreshold
selector = VarianceThreshold(threshold=0.01)
X_train = selector.fit_transform(X_train)

在上面的代码中,我们使用方差选择方法来选择方差大于0.01的特征。然后,我们使用fit_transform()方法来对训练数据进行特征选择。

特征提取

特征提取是从原始数据中提取新的特征,以便训练更好的模型。特征提取可以帮助我们发现原始数据中潜在的特征,并将其转换为更适合训练模型的形式。在特征提取中,我们通常会使用一些转换方法来提取新的特征。以下是一些常用的特征提取方法:

  • 主成分分析(PCA):用于将高维数据转换为低维数据。

  • 线性判别分析(LDA):用于将原始数据转换为新的低维数据,以便进行分类。

  • 核方法:用于将原始数据转换为高维数据,以便更好地进行分类。

Scikit-Learn库提供了许多特征提取方法,例如PCA,LDA等。以下是一个使用PCA方法来提取新特征的示例代码:

from sklearn.decomposition import PCA
pca = PCA(n_components=2)X_train_pca = pca.fit_transform(X_train)

在上面的代码中,我们使用PCA方法将训练数据转换为两个新的特征。然后,我们使用fit_transform()方法来对训练数据进行特征提取。

特征选择和特征提取的优缺点

现在我们已经了解了特征选择和特征提取的方法,让我们来探讨一下它们的优缺点。

特征选择的优缺点

特征选择的优点是:

  • 可以降低模型的复杂度,提高模型的准确性。

  • 可以加快训练速度,减少过拟合的可能性。

  • 可以提高模型的可解释性,帮助我们更好地理解模型。

特征选择的缺点是:

  • 可能会丢失一些重要的信息,导致模型的准确性下降。

  • 计算特征的重要性需要一定的时间和计算资源。

特征提取的优缺点

特征提取的优点是:

  • 可以发现原始数据中潜在的特征,提高模型的准确性。

  • 可以将高维数据转换为低维数据,减少计算资源的消耗。

  • 可以帮助我们更好地理解原始数据和模型。

特征提取的缺点是:

  • 可能会丢失一些重要的信息,导致模型的准确性下降。

  • 特征提取的过程可能比较复杂,需要一定的时间和计算资源。

特征选择还是特征提取?

现在让我们来回答本文的主题问题:特征选择还是特征提取更好?

答案是:取决于具体的情况。

特征选择和特征提取都有各自的优缺点,我们需要根据具体的情况来选择最佳的方法。如果我们已经知道哪些特征对模型的准确性影响较大,那么特征选择可能是更好的选择。如果我们想要发现原始数据中潜在的特征,那么特征提取可能是更好的选择。

结论

在本文中,我们探讨了特征选择和特征提取两种方法,并讨论了它们的优缺点,我们需要根据具体的情况来选择最佳的方法。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/108496.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RK3399平台开发系列讲解(存储篇)Linux 存储系统的 I/O 栈

平台内核版本安卓版本RK3399Linux4.4Android7.1🚀返回专栏总目录 文章目录 一、Linux 存储系统全景二、Linux 存储系统的缓存沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇将介绍 Linux 存储系统的 I/O 原理。 一、Linux 存储系统全景 我们可以把 Linux 存储系…

opencv的haarcascade_frontalface_default.xml等文件

文章目录 GitHub下载在安装好的OpenCV文件夹下寻找opencv-python中获取 GitHub下载 下载地址:https://github.com/opencv/opencv/tree/master/data/haarcascades 在安装好的OpenCV文件夹下寻找 路径如下: 你安装的opencv路径\OpenCV\opencv\build\et…

基于飞腾芯片的设计与调试入门指导

一、啥是自主可控 国产CPU现在厂家细算起来其实有很多,现在华为、小米也在做自己的CPU,瑞芯微、全志等的SoC现在也是广泛应用。但是真正能叫做自主可控的CPU厂商,只有6家。那啥是自主可控?首先来不严谨的讲下现在数字芯片是怎么做的设计。FPGA大家都知道,可以通过Verilog…

Matlab 使用经验分享(常用函数介绍;矩阵常见计算)

Matlab 使用经验分享 大家好!最近有很多朋友询问我关于 Matlab 的使用,于是我决定写一篇博客来分享一下我的经验。对于数学和编程爱好者来说,Matlab 是一个非常有用的工具。我自己在数学实验和数学建模竞赛中也经常使用它。那么,…

【JavaEE】面向切面编程AOP是什么-Spring AOP框架的基本使用

【JavaEE】 AOP(1) 文章目录 【JavaEE】AOP(1)1. Spring AOP 是什么1.1 AOP 与 Spring AOP1.2 没有AOP的世界是怎样的1.3 AOP是什么 2. Spring AOP 框架的学习2.1 AOP的组成2.1.1 Aspect 切面2.1.2 Pointcut 切点2.1.3 Advice 通知…

【广州华锐互动】VR高校虚拟实验教学平台提供丰富的资源支持,提高教学效果

随着科技的不断进步,虚拟现实(VR)技术已经逐渐渗透到各个领域,其中包括教育。 广州华锐互动利用VR虚拟现实技术打造的VR高校虚拟实验教学平台,是一种新型的教学工具,它提供了一个在线的教学资源管理平台,包含教学平台、…

深度学习在自然语言处理中的十大应用领域

文章目录 1. 机器翻译2. 文本分类3. 命名实体识别4. 问答系统5. 文本生成6. 情感分析7. 语言生成与处理8. 信息检索与摘要9. 文本纠错与修复10. 智能对话系统总结 🎉欢迎来到AIGC人工智能专栏~深度学习在自然语言处理中的十大应用领域 ☆* o(≧▽≦)o *☆嗨~我是IT陈…

Git企业开发控制理论和实操-从入门到深入(七)|企业级开发模型

前言 那么这里博主先安利一些干货满满的专栏了! 首先是博主的高质量博客的汇总,这个专栏里面的博客,都是博主最最用心写的一部分,干货满满,希望对大家有帮助。 高质量博客汇总 然后就是博主最近最花时间的一个专栏…

LAMP介绍与配置

一.LAMP 1.1.LAMP架构的组成 CGI(通用网关接口)和FastCGI(快速公共网关接口)都是用于将Web服务器与后端应用程序(如PHP、Python等)进行交互的协议/接口。 特点 CGI FastCGI 运行方式 每个请求启动…

android外卖点餐界面(期末作业)

效果展示&#xff1a; AndroidMainFest.xml <?xml version"1.0" encoding"utf-8"?> <manifest xmlns:android"http://schemas.android.com/apk/res/android"xmlns:tools"http://schemas.android.com/tools"><a…

Hystrix: Dashboard流监控

接上两张服务熔断 开始搭建Dashboard流监控 pom依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocat…

OpenGL —— 2.5、绘制第一个三角形(附源码,glfw+glad)(更新:纹理贴图)

源码效果 C源码 纹理图片 需下载stb_image.h这个解码图片的库&#xff0c;该库只有一个头文件。 具体代码&#xff1a; vertexShader.glsl #version 330 corelayout(location 0) in vec3 aPos; layout(location 1) in vec3 aColor; layout(location 2) in vec2 aUV;out ve…

pnpm安装包管理工具

pnpm安装包管理工具 pnpm代表performant npm&#xff08;高性能的npm&#xff09;&#xff0c;同npm和Yarn&#xff0c;都属于Javascript包管理安装工具&#xff0c;它较npm和Yarn在性能上得到很大提升&#xff0c;被称为快速的&#xff0c;节省磁盘空间的包管理工具。 pnpm…

计算机视觉:深层卷积神经网络的构建

本文重点 上一节课程中我们学习了单卷积层的前向传播,本次课程我们构建一个具有三个卷积层的卷积神经网络,然后从输入(39*39*3)开始进行三次卷积操作,我们来看一下每次卷积的输入和输出维度的变化。 第一层 第一层使用3*3*3的过滤器来提取特征,那么f[1]=3,然后步长s[…

电脑视频编辑软件前十名 电脑视频编辑器怎么剪辑视频

对于大多数创作者而言&#xff0c;视频后期工作基本都是在剪辑软件上进行的。一款适合自己的视频剪辑软件&#xff0c;能够节省出大量的时间和金钱成本&#xff0c;让剪辑师省钱又省心。那么有关电脑视频编辑软件前十名&#xff0c;电脑视频编辑器怎么剪辑视频的相关问题&#…

9.阿里Sentinel哨兵

1.Sentinel Sentinel&#xff08;哨兵&#xff09;是由阿里开源的一款流量控制和熔断降级框架&#xff0c;用于保护分布式系统中的应用免受流量涌入、超载和故障的影响。它可以作为微服务架构中的一部分&#xff0c;用于保护服务不被异常流量冲垮&#xff0c;从而提高系统的稳定…

uview ui 1.x ActonSheet项太多,设置滚动

问题&#xff1a;ActionSheet滚动不了。 使用uview ui &#xff1a;u-action-sheet, 但是item太多&#xff0c;超出屏幕了&#xff0c; 查了一下文档&#xff0c;并没有设置滚动的地方。 官方文档&#xff1a;ActionSheet 操作菜单 | uView - 多平台快速开发的UI框架 - uni-a…

Zebec Protocol:模块化 L3 链 Nautilus Chain,深度拓展流支付体系

过去三十年间&#xff0c;全球金融科技领域已经成熟并迅速增长&#xff0c;主要归功于不同的数字支付媒介的出现。然而&#xff0c;由于交易延迟、高额转账费用等问题愈发突出&#xff0c;更高效、更安全、更易访问的支付系统成为新的刚需。 此前&#xff0c;咨询巨头麦肯锡的一…

机器学习算法示例的收集;MetaAI编码工具Code Llama;“天工AI搜索”首发实测

&#x1f989; AI新闻 &#x1f680; Meta推出新一代AI编码工具Code Llama&#xff0c;助力程序员提高开发效率 摘要&#xff1a;Meta推出Code Llama&#xff0c;这是一个基于Llama 2语言模型打造的AI编码工具&#xff0c;能够生成新的代码并调试人类编写的工作。Code Llama可…

解决MASM32代码汇编出错: error A2181: initializer must be a string or single item

最近用MASM32编程更新SysInfo&#xff0c;增加对IPv6连接信息的收集&#xff0c;使用到了 typedef struct _MIB_TCP6ROW_OWNER_MODULE {UCHAR ucLocalAddr[16];DWORD dwLocalScopeId;DWORD dwLocalPort;UCHAR ucRemoteAddr[16];DWORD …