粒子群算法的基本原理和Matlab实现

1.案例背景

1.1 PSO算法介绍

        粒子群优化算法(Particle Swarm Optimization,PSO)是计算智能领域,除了蚁群算法,鱼群算法之外的一种群体智能的优化算法,该算法最早是由Kennedy和 Eberhart 在1995年提出的。PSO算法源于对鸟类捕食行为的研究,鸟类捕食时,每只鸟找到食物最简单有效的方法就是搜寻当前距离食物最近的鸟的周围区域。
        PSO算法是从这种生物种群行为特征中得到启发并用于求解优化问题的,算法中每个粒子都代表问题的一个潜在解,每个粒子对应一个由适应度函数决定的适应度值。粒子的速度决定了粒子移动的方向和距离,速度随自身及其他粒子的移动经验进行动态调整,从而实现个体在可解空间中的寻优。
        PSO算法首先在可解空间中初始化一群粒子,每个粒子都代表极值优化问题的一个潜在最优解,用位置、速度和适应度值三项指标表示该粒子特征,适应度值由适应度函数计算得到,其值的好坏表示粒子的优劣。粒子在解空间中运动,通过跟踪个体极值 Pbest和群体极值Gbest更新个体位置;个体极值Pbest是指个体所经历位置中计算得到的适应度值最优位置,群体极值Gbest是指种群中的所有粒子搜索到的适应度最优位置。粒子每更新一次位置,就计算一次适应度值,并且通过比较新粒子的适应度值和个体极值、群体极值的适应度值更新个体极值 Pbest和群体极值 Gbest位置。
        假设在一个D维的搜索空间中,有n个粒子组成的种群X=(X1,X1 ,…,Xn),其中第i个粒子表示为一个D维的向量Xi=[xi1,xi22,…,xiD],代表第i个粒子在D维搜索空间中的位置,亦代表问题的一个潜在解。根据目标函数即可计算出每个粒子位置X对应的适应度值。第i个粒子的速度为Vi=[Vi1 ,Vi2.…,ViD],其个体极值为Pi=[Pi1,Pi2,…,PiD],种群的全局极值为Pg=[Pg1,Pg2,…,PgD]。
        在每一次迭代过程中,粒子通过个体极值和全局极值更新自身的速度和位置,更新公式如下:

1.2 非线性函数

        算例中的非线性函数为:

        从函数图形可以看出,该函数有很多局部极小值点,最小值点为0,最小值位置为(0,0)。

2.模型建立

        基于PSO算法的函数极值寻优算法流程图如图35-2所示。

        其中,粒子和速度初始化对初始粒子位置和粒子速度赋予随机值。根据式(35-3)计算粒子适应度值。根据初始粒子适应度值确定个体极值和群体极值。根据式(35-1)与式(35-2)更新粒子速度和位置。根据新种群中粒子适应度值更新个体极值和群体极值。
        对于本案例来说,适应度函数为Ackley函数表达式,适应度值为函数值。种群粒子数为20,每个粒子的维数为2,算法迭代进化次数为100。

3.编程实现

        根据PSO算法原理,在 MATLAB中编程实现基于 PSO算法的函数极值寻优算法。

3.1 适应度函数

function y = fun(x)
%函数用于计算粒子适应度值
%x           input           输入粒子 
%y           output          粒子适应度值 y=-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+exp(1);%y=x(1)^2-10*cos(2*pi*x(1))+10+x(2)^2-10*cos(2*pi*x(2))+10;

3.2 主函数

%% 该代码为基于PSO的函数极值寻优%% 清空环境
clc
clear%% 参数初始化
%粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;maxgen=500;   % 进化次数  
sizepop=100;   %种群规模Vmax=1;
Vmin=-1;
popmax=5;
popmin=-5;%% 产生初始粒子和速度
for i=1:sizepop%随机产生一个种群pop(i,:)=5*rands(1,2);    %初始种群V(i,:)=rands(1,2);  %初始化速度%计算适应度fitness(i)=fun(pop(i,:));   %染色体的适应度
end%% 个体极值和群体极值
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:);   %全局最佳
gbest=pop;    %个体最佳
fitnessgbest=fitness;   %个体最佳适应度值
fitnesszbest=bestfitness;   %全局最佳适应度值%% 迭代寻优
for i=1:maxgenfor j=1:sizepop%速度更新V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));V(j,find(V(j,:)>Vmax))=Vmax;V(j,find(V(j,:)<Vmin))=Vmin;%种群更新pop(j,:)=pop(j,:)+0.5*V(j,:);pop(j,find(pop(j,:)>popmax))=popmax;pop(j,find(pop(j,:)<popmin))=popmin;%适应度值fitness(j)=fun(pop(j,:)); endfor j=1:sizepop%个体最优更新if fitness(j) < fitnessgbest(j)gbest(j,:) = pop(j,:);fitnessgbest(j) = fitness(j);end%群体最优更新if fitness(j) < fitnesszbestzbest = pop(j,:);fitnesszbest = fitness(j);endend yy(i)=fitnesszbest;    end
%% 结果分析
plot(yy)
title('最优个体适应度','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);

3.3 运行说明

        首先将适应度函数代码单独保存为fun.m文件,然后新建一个文件存放主函数,运行即可得到结果:

        最终得到的最优个体适应度值为0.00000328,对应的粒子位置为(7.07633222538084e-05  ,  -0.000102163303292990),PSO算法寻优得到最优值接近函数实际最优值,说明PSO算法具有较强的函数极值寻优能力。

4 案例扩展

4.1自适应变异

        粒子群优化算法收敛快,具有很强的通用性,但同时存在着容易早熟收敛、搜索精度较低、后期迭代效率不高等缺点。借鉴遗传算法中的变异思想,在 PSO算法中引人变异操作,即对某些变量以一定的概率重新初始化。变异操作拓展了在迭代中不断缩小的种群搜索空间,使粒子能够跳出先前搜索到的最优值位置,在更大的空间中开展搜索,同时保持了种群多样性,提高算法寻找到更优值的可能性。因此,在普通粒子群算法的基础上引入了简单变异算子,基本思想就是粒子每次更新之后,以一定概率重新初始化粒子,MATLAB代码如下


%% 该代码为基于变异粒子群算法的函数极值寻优算法
%% 清空环境
clc
clear%% 参数初始化
%粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;maxgen=500;   % 进化次数  
sizepop=100;   %种群规模Vmax=1;
Vmin=-1;
popmax=5;
popmin=-5;%% 产生初始粒子和速度
for i=1:sizepop%随机产生一个种群pop(i,:)=5*rands(1,2);    %初始种群V(i,:)=rands(1,2);  %初始化速度%计算适应度fitness(i)=fun(pop(i,:));   %染色体的适应度
end%% 个体极值和群体极值
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:);   %全局最佳
gbest=pop;    %个体最佳
fitnessgbest=fitness;   %个体最佳适应度值
fitnesszbest=bestfitness;   %全局最佳适应度值%% 迭代寻优
for i=1:maxgenfor j=1:sizepop%速度更新V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));V(j,find(V(j,:)>Vmax))=Vmax;V(j,find(V(j,:)<Vmin))=Vmin;%种群更新pop(j,:)=pop(j,:)+0.5*V(j,:);pop(j,find(pop(j,:)>popmax))=popmax;pop(j,find(pop(j,:)<popmin))=popmin;if rand>0.98     pop(j,:)=rands(1,2);end%适应度值fitness(j)=fun(pop(j,:)); endfor j=1:sizepop%个体最优更新if fitness(j) < fitnessgbest(j)gbest(j,:) = pop(j,:);fitnessgbest(j) = fitness(j);end%群体最优更新if fitness(j) < fitnesszbestzbest = pop(j,:);fitnesszbest = fitness(j);endend yy(i)=fitnesszbest;    end
%% 结果分析
plot(yy)
title('最优个体适应度','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);
web browser www.matlabsky.com

4.2 惯性权重的选择

        惯性权重w体现的是粒子当前速度多大程度上继承先前的速度,Shi.Y最先将惯性权重w引人到 PSO算法中,并分析指出一个较大的惯性权值有利于全局搜索,而一个较小的惯性权值则更利于局部搜索。为了更好地平衡算法的全局搜索与局部搜索能力,其提出了线性递减惯性权重(Linear Decreasing Inertia Weight,LDIW),即

4.3 动态粒子群算法

        基本 PSO算法在很多领域的静态优化问题中得到了广泛的应用,但是在实际环境中遇到的问题一般比较复杂,且往往随时间变化,也就是说问题最优解是动态改变的。例如,在物流配送过程中,由于受到客户优先级、交通状况等因素变化的影响,物流配送问题也相应地发生变化。对于这种需要跟踪动态极值的问题,基本 PSO算法难以解决。为了跟踪动态极值,最常用的方法是对基本 PSO算法做两方面的关键改进:第一是引入探测机制,使种群或粒子获得感知外部环境变化的能力;第二是引入响应机制,在探测到环境的变化后,采取某种响应方式对种群进行更新,以适应动态环境。可以采用带敏感粒子的 PSO算法实现动态环境寻优。带敏感粒子的PSO算法在环境中随机选择一个或若干个位置,这些位置称为敏感粒子,每次迭代中计算敏感粒子的适应度值,当发现适应度值变化时,认为环境已发生变化,敏感粒子适应度值变化超过一定阈值时 PSO算法作出响应。响应的方式是按比例重新初始化粒子位置和粒子速度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/108972.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mac清理磁盘空间软件有哪些 mac清理磁盘空间怎么清理

随着时间的推移&#xff0c;Mac电脑上的文件会越来越多&#xff0c;很快就会占满磁盘空间。这时候&#xff0c;我们需要一个好的Mac清理磁盘空间软件来释放空间&#xff0c;保持电脑的良好性能。那么&#xff0c;mac清理磁盘空间软件有哪些呢&#xff1f;接下来&#xff0c;我将…

用 PHP 和 JavaScript 显示地球卫星照片

向日葵 8 号气象卫星是日本宇宙航空研究开发机构设计制造的向日葵系列卫星之一&#xff0c;重约 3500 公斤&#xff0c;设计寿命 15 年以上。该卫星于 2014 年 10 月 7 日由 H2A 火箭搭载发射成功&#xff0c;主要用于监测暴雨云团、台风动向以及持续喷发活动的火山等防灾领域。…

几个nlp的小任务(生成式任务——语言模型(CLM与MLM))

@TOC 本章节需要用到的类库 微调任意Transformers模型(CLM因果语言模型、MLM遮蔽语言模型) CLM MLM 准备数据集 展示几个数据的结构

【Spring Boot】数据库持久层框架MyBatis — MyBatis简介

MyBatis简介 本节首先会介绍什么是ORM、什么是MyBatis、MyBatis的特点以及核心概念&#xff0c;最后介绍MyBatis是如何启动、如何加载配置文件的&#xff1f; 1.什么是ORM ORM&#xff08;Object Relational Mapping&#xff0c;对象关系映射&#xff09;是为了解决面向对象…

下一代存储解决方案:湖仓一体

文章首发地址 湖仓一体是将数据湖和数据仓库相结合的一种数据架构&#xff0c;它可以同时满足大数据存储和传统数据仓库的需求。具体来说&#xff0c;湖仓一体可以实现以下几个方面的功能&#xff1a; 数据集成&#xff1a; 湖仓一体可以集成多个数据源&#xff0c;包括结构…

C++ 网络编程项目fastDFS分布式文件系统(九)总结

1. Location语法 1. 语法规则 location [ |~|~ * |^~ ] /uri/ { … } 正则表达式中的特殊字符 : - . () {} [] * ? 2. Location 优先级说明 在 nginx 的 location 和配置中 location 的顺序没有太大关系。 与 location 表达式的类型有关。 相同类型的表达式&a…

K8S最新版本集群部署(v1.28) + 容器引擎Docker部署(上)

温故知新 &#x1f4da;第一章 前言&#x1f4d7;背景&#x1f4d7;目的&#x1f4d7;总体方向 &#x1f4da;第二章 基本环境信息&#x1f4d7;机器信息&#x1f4d7;软件信息&#x1f4d7;部署用户kubernetes &#x1f4da;第三章 Kubernetes各组件部署&#x1f4d7;安装kube…

BlazorServer中C#与JavaScript的相互调用

BlazorServer中C#与JavaScript的相互调用 前言&#xff1a; ​ 虽然BlazorServer中推荐使用C#在razor页面中的替代JavaScript来完成逻辑的编写&#xff0c;但当需要使用第三方的javascript文件/组件里的内容时&#xff0c;则难免要在C#中调用其方法或对象。反之当你的(用到第…

Java:HashMap、LinkedHashMap、TreeMap集合的底层原理和集合的嵌套

HashMap的底层原理 LinkedHashMap的底层原理 TreeMap集合的底层原理 集合的嵌套

Elasticsearch 8.X reindex 源码剖析及提速指南

1、reindex 源码在线地址 为方便大家验证&#xff0c;这里给出 reindex github 源码地址。 https://github.com/elastic/elasticsearch/blob/001fcfb931454d760dbccff9f4d1b8d113f8708c/server/src/main/java/org/elasticsearch/index/reindex/ReindexRequest.java reindex 常见…

IDEA对Web和Tomcat的一些配置

这里只是做了自己学习中的一点记录&#xff0c;仅供参考哈&#xff01; 配置Tomcat Modules新增Web 新增module后新增Artifacts 新增Artifacts后Tomcat新增布署 将指定的module由普通java项目变成web项目 直接创建布署到Tomcat时所需要的Aritifacts包 配置Servlet的依赖包 配置…

Vue2学习笔记の使用Vue脚手架

目录 使用Vue脚手架脚手架文件结构关于不同版本的Vuevue.config.js配置文件ref属性props配置项mixin(混入)插件scoped样式总结TodoList案例webStorage组件的自定义事件全局事件总线&#xff08;GlobalEventBus&#xff09;消息订阅与发布&#xff08;pubsub&#xff09;nextTic…

redis windows 版本安装

1. 下载windows安装包并解压 如果是Linux版本可以直接到官网下载&#xff0c;自3.x起官网和微软网站就没有redis安装包更新了&#xff0c;好在github有开发者在编译发布更新&#xff08;目前最新有5.0.9版本可下&#xff09;&#xff0c;地址&#xff1a;redis windows 5版本下…

Maven 基础之安装和命令行使用

Maven 的安装和命令行使用 1. 下载安装 下载解压 maven 压缩包&#xff08;http://maven.apache.org/&#xff09; 配置环境变量 前提&#xff1a;需要安装 java 。 在命令行执行如下命令&#xff1a; mvn --version如出现类似如下结果&#xff0c;则证明 maven 安装正确…

MyBatisPlus实现多租户功能

前言&#xff1a;多租户是一种软件架构技术&#xff0c;在多用户的环境下&#xff0c;共有同一套系统&#xff0c;并且要注意数据之间的隔离性。 一、SaaS多租户简介 1.1、SaaS多租户 SaaS&#xff0c;是Software-as-a-Service的缩写名称&#xff0c;意思为软件即服务&#x…

HTML之VSCode简单配置与创建

目录 插件下载 然后输入源码&#xff1a; 使用 效果 插件下载 下载这个插件后可以直接运行&#xff1a; 然后创建一个文件&#xff1a; 然后输入源码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"…

Redis 10 大数据类型

1. which 10 1. redis字符串 2. redis 列表 3. redis哈希表 4. redis集合 5. redis有序集合 6. redis地理空间 7. redis基数统计 8. redis位图 9. redis位域 10. redis流 2. 获取redis常见操作指令 官网英文&#xff1a;https://redis.io/commands 官网中文&#xff1a;https:/…

9.3 功率放大电路的安全运行

在功率放大电路中&#xff0c;功放管既要流过大电流&#xff0c;又要承受高电压。例如&#xff0c;在 OCL 电路中&#xff0c;只有功放管满足式&#xff08;9.2.13&#xff09;所示极限值的要求&#xff0c;电路才能正常工作。因此&#xff0c;所谓功率放大电路的安全运行&…

【VS Code插件开发】状态栏(五)

&#x1f431; 个人主页&#xff1a;不叫猫先生&#xff0c;公众号&#xff1a;前端舵手 &#x1f64b;‍♂️ 作者简介&#xff1a;前端领域优质作者、阿里云专家博主&#xff0c;共同学习共同进步&#xff0c;一起加油呀&#xff01; &#x1f4e2; 资料领取&#xff1a;前端…

java八股文面试[多线程]——死锁、活锁、饥饿

DCL双重锁&#xff1a;TODO 如何预防死锁&#xff1a; 如何查看线程死锁&#xff1a; 知识来源&#xff1a; 【2023年面试】描述一下线程安全活跃态问题&#xff0c;以及竞态条件_哔哩哔哩_bilibili 【2023年面试】如何预防死锁_哔哩哔哩_bilibili 【并发与线程】阿里一面&…