基于空洞卷积DCNN与长短期时间记忆模型LSTM的dcnn-lstm的回归预测模型

周末的时候有时间鼓捣的一个小实践,主要就是做的多因子回归预测的任务,关于时序数据建模和回归预测建模我的专栏和系列博文里面已经有了非常详细的介绍了,这里就不再多加赘述了,这里主要是一个模型融合的实践,这里的数据是仿真生成的领域数据集,典型的表格型数据集,首先看下数据样例:

 基础的数据处理实现如所示:

import pandas as pd# 读取 "data" 工作表的内容
sheet_name = "data"
data = pd.read_excel("dataset.xlsx", sheet_name=sheet_name)# 删除第一列日期列
data1= data.iloc[:, 1:]print(data1.head(20))

接下来随机划分数据集,实现如下所示:

from sklearn.model_selection import train_test_split
X = data.drop(columns=['Y'])  # 这将删除名为'label'的列,并返回其余部分
y = data['Y']
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

接下来对数据进行归一化处理计算,如下所示:

# 创建特征标准化的对象
scaler = StandardScaler()  # 或者使用 MinMaxScaler() 来进行 Min-Max 缩放# 训练标准化对象并转换训练特征
x_train_scaled = scaler.fit_transform(x_train)# 假设你有测试数据 x_test 和 y_test,对测试特征进行相同的变换
x_test_scaled = scaler.transform(x_test)# 输出尺寸
print("训练特征(标准化后)的尺寸:", x_train_scaled.shape)
print("测试特征(标准化后)的尺寸:", x_test_scaled.shape)
print("特征列(x_train)的尺寸:", x_train.shape)
print("标签列(y_train)的尺寸:", y_train.shape)
print("特征列(x_test)的尺寸:", x_test.shape)
print("标签列(y_test)的尺寸:", y_test.shape)

接下来是数据转化处理:

def reshape_to_window(data, window=window):"""数据转化"""n = data.shape[0]m = data.shape[1]result = np.zeros((n - window + 1, window, m))for i in range(n - window + 1):result[i] = data[i:i+window]return resultx_train = reshape_to_window(x_train, window)
y_train = y_train.iloc[window-1:]x_test = reshape_to_window(x_test, window)
y_test = y_test.iloc[window-1:]print("新的x_train形状:", x_train .shape )
print("新的y_train形状:", y_train .shape)
print("新的x_test形状:", x_test.shape)
print("新的y_test形状:", y_test.shape)

接下来基于keras框架初始化搭建模型,这里模型部分主要是运用了DCNN和LSTM,对其进行融合。首先来整体回归下DCNN和LSTM:

DCNN

空洞卷积(dilated convolution)是一种卷积神经网络(Convolutional Neural Network, CNN)中的卷积操作,它通过在卷积核上添加空洞(dilation)来扩展感受野(receptive field),从而提高模型的鲁棒性和泛化能力。

在传统的卷积操作中,卷积核只能覆盖一小部分特征图,但是通过在卷积核上添加空洞,可以让卷积核在相邻的特征图之间滑动,从而扩展了卷积核的感受野,增强了模型的表达能力。空洞卷积的基本原理是将传统卷积操作的滑动步长(stride)设置为1,然后将卷积核的大小(kernel size)除以2,使得卷积核中心点能够与特征图上任意位置的像素进行卷积运算。

在空洞卷积中,每个卷积层都具有不同数量的空洞率(dilation rate),表示在每个卷积层中添加的空洞数量。空洞率越高,则卷积核的感受野越大,能够提取更多的特征信息。但是,空洞率过高会导致特征图变得稀疏,难以捕捉到细节信息。因此,在空洞卷积中需要权衡空洞率和特征图的稀疏性。

空洞卷积在深度卷积神经网络中可以应用于多个任务,例如图像分类、目标检测、语义分割等。相比于传统的卷积操作,空洞卷积能够提高模型的鲁棒性和泛化能力,同时减少计算量和参数数量,使得模型更加轻量级和高效。

LSTM

LSTM(Long Short-Term Memory)是一种循环神经网络(RNN)的变体,特别适用于处理序列数据。相较于传统的RNN,LSTM在处理时间序列数据时具有更好的性能和稳定性。

LSTM由遗忘门(forget gate)、输入门(input gate)、输出门(output gate)和存储单元(cell state)组成。遗忘门决定了前一时刻的记忆状态中哪些信息应该被遗忘,输入门决定了当前输入的信息中哪些应该被用于计算输出,输出门决定了当前时刻的输出,而存储单元则用于存储和输出当前时刻的记忆状态。

LSTM的核心思想是通过遗忘门和输入门来控制信息的流动,从而在长期依赖和短期依赖之间取得平衡。遗忘门和输入门都是由sigmoid函数和线性层组成的,而输出门则是由sigmoid函数、线性层和ReLU函数组成的。这些门控制了信息的流动方向和强度,使得LSTM能够处理长期依赖关系。

除了LSTM之外,还有GRU(Gated Recurrent Unit)和SRU(Simple Recurrent Unit)等循环神经网络变体,它们在结构和性能上与LSTM类似。LSTM在自然语言处理、语音识别、图像处理等领域都有广泛的应用。

模型部分代码实现如下所示:

from tensorflow.keras import backend as K# # 输入参数input_size = 176  # 你的输入尺寸
lstm_units =16# 你的LSTM单元数
dropout = 0.01    # 你的dropout率# 定义模型结构
inputs = Input(shape=(window, input_size))# 第一层空洞卷积
model = Conv1D(filters=lstm_units, kernel_size=1, dilation_rate=1, activation='relu')(inputs)
# model = MaxPooling1D(pool_size=1)(model)
# model = Dropout(dropout)(model)# 第二层空洞卷积
model = Conv1D(filters=lstm_units, kernel_size=1, dilation_rate=2, activation='relu')(model)
# model = MaxPooling1D(pool_size=1)(model)# 第三层空洞卷积
model = Conv1D(filters=lstm_units, kernel_size=1, dilation_rate=4, activation='relu')(model)
# model = MaxPooling1D(pool_size=1)(model)
# model = BatchNormalization()(model)# LSTM层
model = LSTM(lstm_units, return_sequences=False)(model)# 输出层
outputs = Dense(1)(model)# 创建和编译模型
model = Model(inputs=inputs, outputs=outputs)model.compile(loss='mse', optimizer='adam', metrics=['mse'])
model.summary()

摘要输出如下所示:

 接下来就可以启动模型训练,日志输出如下所示:

 接下来对模型整体训练过程中的loss进行可视化,如下所示:

plt.figure(figsize=(12, 6))
plt.plot(history.history['loss'], label='Training Loss')
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(loc='upper right')
plt.show()

结果如下所示:

 接下来对测试集进行预测对比分析,如下所示:

explained_variance_score:解释回归模型的方差得分,其值取值范围是[0,1],越接近于1说明自变量越能解释因变量
    的方差变化,值越小则说明效果越差。
    mean_absolute_error:平均绝对误差(Mean Absolute Error,MAE),用于评估预测结果和真实数据集的接近程度的程度
    ,其其值越小说明拟合效果越好。
    mean_squared_error:均方差(Mean squared error,MSE),该指标计算的是拟合数据和原始数据对应样本点的误差的
    平方和的均值,其值越小说明拟合效果越好。
    r2_score:判定系数,其含义是也是解释回归模型的方差得分,其值取值范围是[0,1],越接近于1说明自变量越能解释因
    变量的方差变化,值越小则说明效果越差。 

基于回归模型评测指标对模型进行评估计算,核心代码实现如下所示:

#!usr/bin/env python
#encoding:utf-8
from __future__ import division'''
__Author__:沂水寒城
功能:计算回归分析模型中常用的四大评价指标
'''from sklearn.metrics import explained_variance_score, mean_absolute_error, mean_squared_error, r2_scoredef calPerformance(y_true,y_pred):'''模型效果指标评估y_true:真实的数据值y_pred:回归模型预测的数据值'''model_metrics_name=[explained_variance_score, mean_absolute_error, mean_squared_error, r2_score]  tmp_list=[]  for one in model_metrics_name:  tmp_score=one(y_true,y_pred)  tmp_list.append(tmp_score)  print ['explained_variance_score','mean_absolute_error','mean_squared_error','r2_score']print tmp_listreturn tmp_listdef mape(y_true, y_pred):return np.mean(np.abs((y_pred - y_true) / y_true)) * 100
from sklearn.metrics import r2_score
RMSE = mean_squared_error(y_train_predict, y_train)**0.5
print('训练集上的/RMSE/MAE/MSE/MAPE/R^2')
print(RMSE)
print(mean_absolute_error(y_train_predict, y_train))
print(mean_squared_error(y_train_predict, y_train) )
print(mape(y_train_predict, y_train) )
print(r2_score(y_train_predict, y_train) )RMSE2 = mean_squared_error(y_test_predict, y_test)**0.5
print('测试集上的/RMSE/MAE/MSE/MAPE/R^2')
print(RMSE2)
print(mean_absolute_error(y_test_predict, y_test))
print(mean_squared_error(y_test_predict, y_test))
print(mape(y_test_predict,  y_test))
print(r2_score(y_test_predict, y_test))

结果输出如下所示:

训练集上的/RMSE/MAE/MSE/MAPE/R^2
0.011460134959888058
0.00918032687965506
0.00013133469329884847
4.304916429848429
0.9907179432442654
测试集上的/RMSE/MAE/MSE/MAPE/R^2
0.08477191056357428
0.06885029105374023
0.007186276820598636
24.05688263657184
0.4264760739398442

关于回归建模相关的内容感兴趣的话可以参考我前面的文章:

《常用数据回归建模算法总结记录》

《sklearn实践之——计算回归模型的四大评价指标(explained_variance_score、mean_absolute_error、mean_squared_error、r2_score)》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/110183.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络编程套接字(3): 简单的TCP网络程序

文章目录 网络编程套接字(3)4. 简单的TCP网络程序4.1 服务端创建(1) 创建套接字(2) 绑定端口(3) 监听(4) 获取新连接(5) 处理读取与写入 4.2 客户端创建(1)连接服务器 4.3 代码编写(1) v1__简单发送消息(2) v2_多进程版本(3) v3_多线程版本(4) v4_线程池版本 网络编程套接字(3)…

如何使用CSS实现一个自适应等高布局?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 使用 Flexbox 布局⭐ 使用 Grid 布局⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅!这个专栏是为那些对Web开发…

爬虫逆向实战(二十三)--某准网数据

一、数据接口分析 主页地址:某准网 1、抓包 通过抓包可以发现数据接口是api_to/search/company_v2.json 2、判断是否有加密参数 请求参数是否加密? 通过查看“载荷”模块可以发现b参数和kiv参数是加密参数 请求头是否加密? 无响应是否加…

在云原生时代,构建高效的大数据存储与分析平台

文章目录 1. **选择适当的数据存储技术:**2. **采用分布式架构:**3. **数据分区和索引:**4. **采用列式存储:**5. **数据压缩和编码:**6. **使用缓存技术:**7. **数据分片和复制:**8. **自动化运…

GNS3 在 Linux 上的安装指南

文章目录 GNS3 在 Linux 上的安装指南1. 基于 Ubuntu 的发行版安装 GNS32. 基于 Debian 的安装3. 基于 ArchLinux 的安装4. 从 Pypi 安装 GNS35. 启动 GNS3 服务端GNS3 在 Linux 上的安装指南 大家好,今天我们来聊聊如何在 Linux 上安装 GNS3。GNS3 是一个非常受欢迎的网络模…

软件工程(二十) 系统运行与软件维护

1、系统转换计划 1.1、遗留系统的演化策略 时至今日,你想去开发一个系统,想完全不涉及到已有的系统,基本是不可能的事情。但是对于已有系统我们有一个策略。 比如我们是淘汰掉已有系统,还是继承已有系统,或者集成已有系统,或者改造遗留的系统呢,都是不同的策略。 技术…

macOS上开源免费的新闻阅读器SABnzbd

SABnzbd Mac版是一款运行在Mac平台上的开源新闻阅读器,这款阅读器界面简约、功效简单强大,使用SABnzbd时可以帮助使用Python语言编写,让用户使用usenet新闻组更便利,是你阅读新闻的好帮手! SABnzbd具有以下主要特点&a…

Sentinel流量控制与熔断降级

📝 学技术、更要掌握学习的方法,一起学习,让进步发生 👩🏻 作者:一只IT攻城狮 ,关注我,不迷路 。 💐学习建议:1、养成习惯,学习java的任何一个技术…

git 把项目托管到 码云出现的错误集合

分享一下我git项目时碰见的错误 1、error: could not lock config file D:/orcad/Cadence/SPB_Data/.gitconfig: No suchfile or directory 在下载git后设置用户名、邮箱时会出现的错误 需要去修改环境变量,这个之前写好了,可以跳转看看 Git配置error:…

三维模型OBJ格式轻量化压缩并行计算处理方法浅析

三维模型OBJ格式轻量化压缩并行计算处理方法浅析 三维模型的轻量化是指通过一系列技术和算法来减小三维模型的文件大小,以提高模型在计算机中的加载、渲染和传输效率。并行计算是利用多个计算单元同时执行任务,以加速计算过程的一种技术。在三维模型的O…

900ES1-0100 honeywell 可减少视觉引导应用的整体开发时间

900ES1-0100 honeywell 可减少视觉引导应用的整体开发时间 CV2视觉系统配有高柔性电缆(以太网或USB)。通过将高柔性电缆作为所有CV2视觉系统的标准配置,Epson CV2摄像机可以安装在机器人臂(移动)或固定装置(固定)上。基于向导的校准使机器人到视觉系统的校准变得轻…

关于单例模式

单例模式的目的: 单例模式的目的和其他的设计模式的目的都是一样的,都是为了降低对象之间的耦合性,增加代码的可复用性,可维护性和可扩展性。 单例模式: 单例模式是一种常用的设计模式,用简单的言语说&am…

CSS学习笔记01

CSS笔记01 什么是CSS CSS(Cascading Style Sheets ):层叠样式表,也可以叫做级联样式表,是一种用来表现 HTML 或 XML 等文件样式的计算机语言。字体,颜色,边距,高度,宽度…

代码随想录算法训练营之JAVA|第四十二天|70. 爬楼梯

今天是第 天刷leetcode,立个flag,打卡60天,如果做不到,完成一件评论区点赞最高的挑战。 算法挑战链接 70. 爬楼梯https://leetcode.cn/problems/climbing-stairs/ 第一想法 这是一个动态规划的入门题目,在看完完全背…

液体神经网络LLN:通过动态信息流彻底改变人工智能

巴乌米克泰吉 一、说明 在在人工智能领域,神经网络已被证明是解决复杂问题的非常强大的工具。多年来,研究人员不断寻求创新方法来提高其性能并扩展其能力。其中一种方法是液体神经网络(LNN)的概念,这是一个利用动态计算…

【计算机网络】OSI 七层网络参考模型

OSI(Open Systems Interconnection)七层网络参考模型是一种用于描述计算机网络通信的框架,将网络通信划分为七个不同的层次,每个层次负责不同的功能。 以下为 OSI 七层网络参考模型的简单表格: --------------------…

设计模式—原型模式(Prototype)

目录 一、什么是原型模式? 二、原型模式具有什么优缺点吗? 三、有什么缺点? 四、什么时候用原型模式? 五、代码展示 ①、简历代码初步实现 ②、原型模式 ③、简历的原型实现 ④、深复制 ⑤、浅复制 一、什么是原型模式&…

Leetcode刷题笔记--Hot31-40

1--颜色分类&#xff08;75&#xff09; 主要思路&#xff1a; 快排 #include <iostream> #include <vector>class Solution { public:void sortColors(std::vector<int>& nums) {quicksort(nums, 0, nums.size()-1);}void quicksort(std::vector<int…

Apache Celeborn 让 Spark 和 Flink 更快更稳更弹性

摘要&#xff1a;本文整理自阿里云/数据湖 Spark 引擎负责人周克勇&#xff08;一锤&#xff09;在 Streaming Lakehouse Meetup 的分享。内容主要分为五个部分&#xff1a; Apache Celeborn 的背景Apache Celeborn——快Apache Celeborn——稳Apache Celeborn——弹Evaluation…

IntelliJ 中如何配置 Tomcat 调试

Tomcat 在 IntelliJ 中的配置要求首先你要下载 Tomcat。 设置服务器 在 IntelliJ 下面先选择 Run&#xff0c;然后选择配置运行配置。 在弹出的界面中&#xff0c;有一个编辑配置的选项。 然后在弹出的页面中选择添加。 选择 Tomcat 在弹出的添加页面中选择添加 Tomcat&…