计算机竞赛 基于YOLO实现的口罩佩戴检测 - python opemcv 深度学习

文章目录

  • 0 前言
  • 1 课题介绍
  • 2 算法原理
    • 2.1 算法简介
    • 2.2 网络架构
  • 3 关键代码
  • 4 数据集
    • 4.1 安装
    • 4.2 打开
    • 4.3 选择yolo标注格式
    • 4.4 打标签
    • 4.5 保存
  • 5 训练
  • 6 实现效果
    • 6.1 pyqt实现简单GUI
    • 6.3 视频识别效果
    • 6.4 摄像头实时识别
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于YOLO实现的口罩佩戴检测 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 课题介绍

受全球新冠肺炎疫情影响,虽然目前中国疫情防控取 得了良好效果,绝大多数地区处于疫情低风险,但个别地 区仍有零星散发病例和局部聚集性疫情。在机场、地 铁
站、医院等公共服务和重点机构场所规定必须佩戴口罩, 口罩佩戴检查已成为疫情防控的必备操作。目前,口罩 佩戴检查多为人工检查方式,如高铁上会有乘务人员一节
节车厢巡逻检查提醒乘客佩戴口罩,在医院等高危场所也 会有医务人员提醒时刻戴好口罩。人工检查方式存在检 查效率低下、难以及时发现错误佩戴口罩以及未佩戴口罩
行为等弊端。采用深度学习目标检测方法设计一个具有口罩识别功能的防疫系统,可以大大提高检测效率。

2 算法原理

2.1 算法简介

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;
基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;
Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构;
Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

2.2 网络架构

在这里插入图片描述

上图展示了YOLOv5目标检测算法的整体框图。对于一个目标检测算法而言,我们通常可以将其划分为4个通用的模块,具体包括:输入端、基准网络、Neck网络与Head输出端,对应于上图中的4个红色模块。YOLOv5算法具有4个版本,具体包括:YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四种,本文重点讲解YOLOv5s,其它的版本都在该版本的基础上对网络进行加深与加宽。

  • 输入端-输入端表示输入的图片。该网络的输入图像大小为608*608,该阶段通常包含一个图像预处理阶段,即将输入图像缩放到网络的输入大小,并进行归一化等操作。在网络训练阶段,YOLOv5使用Mosaic数据增强操作提升模型的训练速度和网络的精度;并提出了一种自适应锚框计算与自适应图片缩放方法。
  • 基准网络-基准网络通常是一些性能优异的分类器种的网络,该模块用来提取一些通用的特征表示。YOLOv5中不仅使用了CSPDarknet53结构,而且使用了Focus结构作为基准网络。
  • Neck网络-Neck网络通常位于基准网络和头网络的中间位置,利用它可以进一步提升特征的多样性及鲁棒性。虽然YOLOv5同样用到了SPP模块、FPN+PAN模块,但是实现的细节有些不同。
  • Head输出端-Head用来完成目标检测结果的输出。针对不同的检测算法,输出端的分支个数不尽相同,通常包含一个分类分支和一个回归分支。YOLOv4利用GIOU_Loss来代替Smooth L1 Loss函数,从而进一步提升算法的检测精度。

3 关键代码

class Detect(nn.Module):stride = None  # strides computed during buildonnx_dynamic = False  # ONNX export parameterdef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()self.nc = nc  # number of classesself.no = nc + 5  # number of outputs per anchorself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.grid = [torch.zeros(1)] * self.nl  # init gridself.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output convself.inplace = inplace  # use in-place ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xywh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()anchor_grid = (self.anchors[i].clone() * self.stride[i]) \.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_gridclass Model(nn.Module):def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classessuper().__init__()if isinstance(cfg, dict):self.yaml = cfg  # model dictelse:  # is *.yamlimport yaml  # for torch hubself.yaml_file = Path(cfg).namewith open(cfg, encoding='ascii', errors='ignore') as f:self.yaml = yaml.safe_load(f)  # model dict# Define modelch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channelsif nc and nc != self.yaml['nc']:LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")self.yaml['nc'] = nc  # override yaml valueif anchors:LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')self.yaml['anchors'] = round(anchors)  # override yaml valueself.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelistself.names = [str(i) for i in range(self.yaml['nc'])]  # default namesself.inplace = self.yaml.get('inplace', True)# Build strides, anchorsm = self.model[-1]  # Detect()if isinstance(m, Detect):s = 256  # 2x min stridem.inplace = self.inplacem.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forwardm.anchors /= m.stride.view(-1, 1, 1)check_anchor_order(m)self.stride = m.strideself._initialize_biases()  # only run once# Init weights, biasesinitialize_weights(self)self.info()LOGGER.info('')def forward(self, x, augment=False, profile=False, visualize=False):if augment:return self._forward_augment(x)  # augmented inference, Nonereturn self._forward_once(x, profile, visualize)  # single-scale inference, traindef _forward_augment(self, x):img_size = x.shape[-2:]  # height, widths = [1, 0.83, 0.67]  # scalesf = [None, 3, None]  # flips (2-ud, 3-lr)y = []  # outputsfor si, fi in zip(s, f):xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))yi = self._forward_once(xi)[0]  # forward# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # saveyi = self._descale_pred(yi, fi, si, img_size)y.append(yi)y = self._clip_augmented(y)  # clip augmented tailsreturn torch.cat(y, 1), None  # augmented inference, traindef _forward_once(self, x, profile=False, visualize=False):y, dt = [], []  # outputsfor m in self.model:if m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)return xdef _descale_pred(self, p, flips, scale, img_size):# de-scale predictions following augmented inference (inverse operation)if self.inplace:p[..., :4] /= scale  # de-scaleif flips == 2:p[..., 1] = img_size[0] - p[..., 1]  # de-flip udelif flips == 3:p[..., 0] = img_size[1] - p[..., 0]  # de-flip lrelse:x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scaleif flips == 2:y = img_size[0] - y  # de-flip udelif flips == 3:x = img_size[1] - x  # de-flip lrp = torch.cat((x, y, wh, p[..., 4:]), -1)return pdef _clip_augmented(self, y):# Clip YOLOv5 augmented inference tailsnl = self.model[-1].nl  # number of detection layers (P3-P5)g = sum(4 ** x for x in range(nl))  # grid pointse = 1  # exclude layer counti = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indicesy[0] = y[0][:, :-i]  # largei = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indicesy[-1] = y[-1][:, i:]  # smallreturn ydef _profile_one_layer(self, m, x, dt):c = isinstance(m, Detect)  # is final layer, copy input as inplace fixo = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPst = time_sync()for _ in range(10):m(x.copy() if c else x)dt.append((time_sync() - t) * 100)if m == self.model[0]:LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  {'module'}")LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')if c:LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency# https://arxiv.org/abs/1708.02002 section 3.3# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.m = self.model[-1]  # Detect() modulefor mi, s in zip(m.m, m.stride):  # fromb = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # clsmi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)def _print_biases(self):m = self.model[-1]  # Detect() modulefor mi in m.m:  # fromb = mi.bias.detach().view(m.na, -1).T  # conv.bias(255) to (3,85)LOGGER.info(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))# def _print_weights(self):#     for m in self.model.modules():#         if type(m) is Bottleneck:#             LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weightsdef fuse(self):  # fuse model Conv2d() + BatchNorm2d() layersLOGGER.info('Fusing layers... ')for m in self.model.modules():if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update convdelattr(m, 'bn')  # remove batchnormm.forward = m.forward_fuse  # update forwardself.info()return selfdef autoshape(self):  # add AutoShape moduleLOGGER.info('Adding AutoShape... ')m = AutoShape(self)  # wrap modelcopy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=())  # copy attributesreturn mdef info(self, verbose=False, img_size=640):  # print model informationmodel_info(self, verbose, img_size)def _apply(self, fn):# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffersself = super()._apply(fn)m = self.model[-1]  # Detect()if isinstance(m, Detect):m.stride = fn(m.stride)m.grid = list(map(fn, m.grid))if isinstance(m.anchor_grid, list):m.anchor_grid = list(map(fn, m.anchor_grid))return selfdef parse_model(d, ch):  # model_dict, input_channels(3)LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchorsno = na * (nc + 5)  # number of outputs = anchors * (classes + 5)layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch outfor i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, argsm = eval(m) if isinstance(m, str) else m  # eval stringsfor j, a in enumerate(args):try:args[j] = eval(a) if isinstance(a, str) else a  # eval stringsexcept NameError:passn = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gainif m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:c1, c2 = ch[f], args[0]if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in [BottleneckCSP, C3, C3TR, C3Ghost]:args.insert(2, n)  # number of repeatsn = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)elif m is Detect:args.append([ch[x] for x in f])if isinstance(args[1], int):  # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f)elif m is Contract:c2 = ch[f] * args[0] ** 2elif m is Expand:c2 = ch[f] // args[0] ** 2else:c2 = ch[f]m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace('__main__.', '')  # module typenp = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number paramsLOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # printsave.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelistlayers.append(m_)if i == 0:ch = []ch.append(c2)return nn.Sequential(*layers), sorted(save)

4 数据集

大家可采用公开标注好的数据集。如果为了更深入的学习也可自己标注,但过程相对比较繁琐,麻烦。

以下简单介绍数据标注的相关方法,数据标注这里推荐的软件是labelimg,学长以火灾数据集为例!

4.1 安装

通过pip指令即可安装


pip install labelimg

4.2 打开

在命令行中输入labelimg即可打开

在这里插入图片描述

在这里插入图片描述
打开你所需要进行标注的文件夹

4.3 选择yolo标注格式

点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo。

在这里插入图片描述

4.4 打标签

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok。

注:若要删除目标,右键目标区域,delete即可

在这里插入图片描述

4.5 保存

点击save,保存txt。

在这里插入图片描述

打开具体的标注文件,你将会看到下面的内容,txt文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别id,归一化处理之后的中心点x坐标、y坐标、目标框的w和h。

在这里插入图片描述

5 训练

修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

在这里插入图片描述

6 实现效果

6.1 pyqt实现简单GUI

from PyQt5 import QtCore, QtGui, QtWidgetsclass Ui_Win_mask(object):def setupUi(self, Win_mask):Win_mask.setObjectName("Win_mask")Win_mask.resize(1107, 868)Win_mask.setStyleSheet("QString qstrStylesheet = \"background-color:rgb(43, 43, 255)\";\n""ui.pushButton->setStyleSheet(qstrStylesheet);")self.frame = QtWidgets.QFrame(Win_mask)self.frame.setGeometry(QtCore.QRect(10, 140, 201, 701))self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)self.frame.setFrameShadow(QtWidgets.QFrame.Raised)self.frame.setObjectName("frame")self.pushButton = QtWidgets.QPushButton(self.frame)self.pushButton.setGeometry(QtCore.QRect(10, 40, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton.setFont(font)self.pushButton.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton.setObjectName("pushButton")self.pushButton_2 = QtWidgets.QPushButton(self.frame)self.pushButton_2.setGeometry(QtCore.QRect(10, 280, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton_2.setFont(font)self.pushButton_2.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton_2.setObjectName("pushButton_2")self.pushButton_3 = QtWidgets.QPushButton(self.frame)self.pushButton_3.setGeometry(QtCore.QRect(10, 500, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)font.setStrikeOut(False)self.pushButton_3.setFont(font)self.pushButton_3.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton_3.setObjectName("pushButton_3")self.frame_2 = QtWidgets.QFrame(Win_mask)self.frame_2.setGeometry(QtCore.QRect(230, 110, 1031, 861))self.frame_2.setStyleSheet("")self.frame_2.setFrameShape(QtWidgets.QFrame.StyledPanel)self.frame_2.setFrameShadow(QtWidgets.QFrame.Raised)self.frame_2.setObjectName("frame_2")self.show_picture_page = QtWidgets.QStackedWidget(self.frame_2)self.show_picture_page.setGeometry(QtCore.QRect(-10, 0, 871, 731))font = QtGui.QFont()font.setBold(True)font.setWeight(75)self.show_picture_page.setFont(font)self.show_picture_page.setObjectName("show_picture_page")self.photo = QtWidgets.QWidget()self.photo.setObjectName("photo")self.label = QtWidgets.QLabel(self.photo)self.label.setGeometry(QtCore.QRect(10, 30, 641, 641))font = QtGui.QFont()font.setFamily("Arial")font.setPointSize(36)self.label.setFont(font)self.label.setText("")self.label.setPixmap(QtGui.QPixmap("./images/UI/up.jpeg"))self.label.setObjectName("label")self.pushButton_4 = QtWidgets.QPushButton(self.photo)self.pushButton_4.setGeometry(QtCore.QRect(680, 220, 171, 61))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton_4.setFont(font)self.pushButton_4.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.pushButton_4.setObjectName("pushButton_4")self.pushButton_5 = QtWidgets.QPushButton(self.photo)self.pushButton_5.setGeometry(QtCore.QRect(680, 400, 171, 61))font = QtGui.QFont()font.setUnderline(True)self.pushButton_5.setFont(font)self.pushButton_5.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.pushButton_5.setObjectName("pushButton_5")self.show_picture_page.addWidget(self.photo)self.videos = QtWidgets.QWidget()self.videos.setObjectName("videos")self.vid_img = QtWidgets.QLabel(self.videos)self.vid_img.setGeometry(QtCore.QRect(10, 30, 640, 640))font = QtGui.QFont()font.setFamily("Arial")font.setPointSize(36)self.vid_img.setFont(font)self.vid_img.setText("")self.vid_img.setPixmap(QtGui.QPixmap("./images/UI/up.jpeg"))self.vid_img.setObjectName("vid_img")self.mp4_detection_btn = QtWidgets.QPushButton(self.videos)self.mp4_detection_btn.setGeometry(QtCore.QRect(680, 220, 171, 61))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.mp4_detection_btn.setFont(font)self.mp4_detection_btn.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.mp4_detection_btn.setObjectName("mp4_detection_btn")self.vid_stop_btn = QtWidgets.QPushButton(self.videos)self.vid_stop_btn.setGeometry(QtCore.QRect(680, 400, 171, 61))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.vid_stop_btn.setFont(font)self.vid_stop_btn.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.vid_stop_btn.setObjectName("vid_stop_btn")self.show_picture_page.addWidget(self.videos)self.camera = QtWidgets.QWidget()self.camera.setObjectName("camera")self.webcam_detection_btn = QtWidgets.QPushButton(self.camera)self.webcam_detection_btn.setGeometry(QtCore.QRect(680, 220, 171, 61))self.webcam_detection_btn.setBaseSize(QtCore.QSize(2, 2))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.webcam_detection_btn.setFont(font)self.webcam_detection_btn.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.webcam_detection_btn.setObjectName("webcam_detection_btn")self.cam_img = QtWidgets.QLabel(self.camera)self.cam_img.setGeometry(QtCore.QRect(10, 30, 640, 640))font = QtGui.QFont()font.setFamily("Arial")font.setPointSize(36)self.cam_img.setFont(font)self.cam_img.setText("")self.cam_img.setPixmap(QtGui.QPixmap("./images/UI/up.jpeg"))self.cam_img.setObjectName("cam_img")self.vid_stop_btn_cma = QtWidgets.QPushButton(self.camera)self.vid_stop_btn_cma.setGeometry(QtCore.QRect(680, 400, 171, 61))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.vid_stop_btn_cma.setFont(font)self.vid_stop_btn_cma.setStyleSheet("QPushButton{background-color:rgb(85, 170, 255);}")self.vid_stop_btn_cma.setObjectName("vid_stop_btn_cma")self.show_picture_page.addWidget(self.camera)self.label_2 = QtWidgets.QLabel(Win_mask)self.label_2.setGeometry(QtCore.QRect(430, 40, 251, 71))font = QtGui.QFont()font.setPointSize(24)font.setBold(True)font.setItalic(False)font.setUnderline(True)font.setWeight(75)self.label_2.setFont(font)self.label_2.setStyleSheet("Font{background-color:rgb(85, 170, 255);}")self.label_2.setObjectName("label_2")self.listView = QtWidgets.QListView(Win_mask)self.listView.setGeometry(QtCore.QRect(-5, 1, 1121, 871))self.listView.setStyleSheet(" \n""background-image: url(:/bg.png);")self.listView.setObjectName("listView")self.listView.raise_()self.frame.raise_()self.frame_2.raise_()self.label_2.raise_()self.retranslateUi(Win_mask)self.show_picture_page.setCurrentIndex(0)QtCore.QMetaObject.connectSlotsByName(Win_mask)## 

6.2 图片识别效果

在这里插入图片描述

6.3 视频识别效果

6.4 摄像头实时识别

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/110213.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

打架斗殴监测识别算法 yolov8

打架斗殴监测识别算法采用yolov8先进的图像处理和机器学习算法框架模型&#xff0c;打架斗殴监测识别算法能够自动识别和分析出打架斗殴的行为特征。一旦系统检测到打架斗殴行为&#xff0c;将自动触发告警。YOLO的结构非常简单&#xff0c;就是单纯的卷积、池化最后加了两层全…

抢先体验|乐鑫推出 ESP32-S3-BOX-3 新一代开源 AIoT 开发套件

乐鑫科技 (688018.SH) 非常高兴地宣布其开发套件阵容的最新成员 ESP32-S3-BOX-3。这款完全开源的 AIoT 应用开发套件搭载乐鑫高性能 ESP32-S3 AI SoC&#xff0c;旨在突破传统开发板&#xff0c;成为新一代开发工具的引领者。 【乐鑫新品抢先体验】ESP32-S3-BOX-3 新一代开源 A…

文件上传漏洞之条件竞争

这里拿upload-labs的第18关做演示 首先先看代码 $is_upload false; $msg null;if(isset($_POST[submit])){$ext_arr array(jpg,png,gif);$file_name $_FILES[upload_file][name];$temp_file $_FILES[upload_file][tmp_name];$file_ext substr($file_name,strrpos($file_…

AES+base64+远程加载----ConsoleApplication811项目

ConsoleApplication9.cpp // ConsoleApplication9.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。 //#include <iostream> #include <Windows.h> #include <wininet.h> #include "base64.h" #include "AES.h" …

【Rust】Rust学习 第十九章高级特征

现在我们已经学习了 Rust 编程语言中最常用的部分。在第二十章开始另一个新项目之前&#xff0c;让我们聊聊一些总有一天你会遇上的部分内容。你可以将本章作为不经意间遇到未知的内容时的参考。本章将要学习的功能在一些非常特定的场景下很有用处。虽然很少会碰到它们&#xf…

Redis进阶 - Lua语法

原文首更地址&#xff0c;阅读效果更佳&#xff01; Redis进阶 - Lua语法 | CoderMast编程桅杆https://www.codermast.com/database/redis/redis-advance-lua-language.html 初识 Lua Lua 是一种轻量小巧的脚本语言&#xff0c;用标准的 C 语言编写并以源代码形式开放&#…

闲人闲谈PS之四十六——网络生产全流程

惯例闲话&#xff1a;下半年已开始块行情似乎又是一波大涨&#xff0c;很多朋友委托我介绍PS顾问&#xff0c;很多朋友已经上了能源系统项目&#xff0c;这就造成装备制造的PS又是极度紧缺&#xff0c;rate也还可以&#xff0c;搞的自己也有点心痒痒。这种逆势大涨&#xff0c;…

Django(8)-静态资源引用CSS和图片

除了服务端生成的 HTML 以外&#xff0c;网络应用通常需要一些额外的文件——比如图片&#xff0c;脚本和样式表——来帮助渲染网络页面。在 Django 中&#xff0c;我们把这些文件统称为“静态文件”。 我们使用static文件来存放静态资源&#xff0c;django会在每个 INSTALLED…

ReoGrid.NET集成到winfrom

ReoGrid一个支持excel操作的控件,支持集成到任何winfrom项目内。 先看效果图: 如何使用&#xff1a; 使用ReoGrid自带excel模版设计工具先设计一个模版,设计器如下&#xff1a; 具体例子看官方文档 代码示例如下&#xff1a; var sheet reoGridControl1.CurrentWorksheet; …

从C语言到C++_34(C++11_下)可变参数+ lambda+function+bind+笔试题

目录 1. 可变参数模板 1.1 展开参数包 1.1.1 递归函数方式展开 1.1.2 逗号表达式展开 1.2 emplace相关接口 2. lambda表达式&#xff08;匿名函数&#xff09; 2.1 C11之前函数的缺陷 2.2 lambda表达式语法 2.3 函数对象与lambda表达式 3. 包装器 3.1 function包装器…

华为云服务器前后端分离项目打包上传及nginx配置

目录 1、Spring Boot项目打包 2、后端上传到云服务器 3、前端打包 1&#xff09;前端请求路径修改 2&#xff09;打包上传 4、下载nginx 1&#xff09;添加源 2&#xff09;安装Nginx 3&#xff09;查看nginx安装目录和版本 4&#xff09;启动 重启nginx命令 5&#…

Midjourney学习(一)prompt的基础

prompt目录 sd和mj的比较prompt组成风格表现风格时代描述表情色彩情绪环境 sd和mj的比较 自从去年9月份开始&#xff0c;sd就变得非常或火&#xff0c;跟它一起的还有一个midjourney。 他们就像是程序界的两种模式&#xff0c;sd是开源的&#xff0c;有更多的可能性更可控。但是…

嵌入式学习笔记——ARM的编程模式和7种工作模式

ARM提供的指令集 ARM态-ARM指令集&#xff08;32-bit&#xff09; Thumb态-Thumb指令集&#xff08;16-bit&#xff09; Thumb2态-Thumb2指令集&#xff08;16 & 32 bit&#xff09; Thumb指令集是对ARM指令集的一个子集重新编码得到的&#xff0c;指令长度为16位。通常在…

windows系统配置tcp最大连接数

打开注册表 运行->regedit HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters目录下 增加一个MaxUserPort&#xff08;默认值是5000&#xff0c;端口范围是1025至5000&#xff09;MaxUserPort设置为65534&#xff08;需重启服务器&#xff09; 执行dos命令&…

克服紧张情绪:程序员面试心理准备的关键

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

AI助力智能安检,基于图像目标检测实现危险品X光智能安全检测系统

基于AI相关的技术来对一些重复性的但是又比较重要的工作来做智能化助力是一个非常有潜力的场景&#xff0c;关于这方面的项目开发实践在我之前的文章中也有不少的实践&#xff0c;感兴趣的话可以自行移步阅读即可&#xff1a;《AI助力智能安检&#xff0c;基于目标检测模型实现…

【UE5:CesiumForUnreal】——3DTiles数据属性查询和单体高亮

目录 0.1 效果展示 0.2 实现步骤 1 数据准备 2 属性查询 2.1 射线检测 2.2 获取FeatureID 2.3 属性查询 2.4 属性显示 3 单体高亮 3.1 构建材质参数集 3.2 材质参数设置 3.3 添加Cesium Encode Metadata插件 3.4 从纹理中取出特定FeatureId属性信息 3.5 创建…

linux+QT+FFmpeg 6.0,把多个QImage组合成一个视频

直接上代码吧: RecordingThread.h#ifndef RECORDINGTHREAD_H #define RECORDINGTHREAD_H #include "QTimer" #include <QObject> #include <QImage> #include <QQueue>extern "C"{//因为FFmpeg是c语言,QT里面调用的话需要extern "C…

7、监测数据采集物联网应用开发步骤(5.3)

监测数据采集物联网应用开发步骤(5.2) 静态配置库数据库调用&#xff0c;新建全局变量初始化类com.zxy.main.Init_Page.py #! python3 # -*- coding: utf-8 -Created on 2017年05月10日 author: zxyong 13738196011 from com.zxy.z_debug import z_debug from com.zxy.common…

新SDK平台下载开源全志V853的SDK

获取SDK SDK 使用 Repo 工具管理&#xff0c;拉取 SDK 需要配置安装 Repo 工具。 Repo is a tool built on top of Git. Repo helps manage many Git repositories, does the uploads to revision control systems, and automates parts of the development workflow. Repo is…