WebGL矩阵变换库

目录

矩阵变换库:

Matrix4对象所支持的方法和属性如表所示:

方法属性规范: 


虽然平移、旋转、缩放等变换操作都可以用一个4×4的矩阵表示,但是在写WebGL程序的时候,手动计算每个矩阵很耗费时间。为了简化编程,大多数WebGL开发者都使用矩阵操作函数库来隐藏矩阵计算的细节,简化与矩阵有关的操作。目前已经有一些开源的矩阵库。以下是一个比较好的矩阵变换库可供大家学习使用。有了矩阵函数库,进行如“平移,然后旋转”等各种复合的变换就很简单了。

Matrix4是该矩阵库提供的新类型 ,顾名思义,Matrix4对象(实例)表示一个4×4的矩阵。该对象内部使用类型化数组Floated2Array来存储矩阵的元素。

矩阵变换库:

/*** Constructor of Matrix4* If opt_src is specified, new matrix is initialized by opt_src.* Otherwise, new matrix is initialized by identity matrix.* @param opt_src source matrix(option)*/
var Matrix4 = function(opt_src) {var i, s, d;if (opt_src && typeof opt_src === 'object' && opt_src.hasOwnProperty('elements')) {s = opt_src.elements;d = new Float32Array(16);for (i = 0; i < 16; ++i) {d[i] = s[i];}this.elements = d;} else {this.elements = new Float32Array([1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1]);}
};/*** Set the identity matrix.* @return this*/
Matrix4.prototype.setIdentity = function() {var e = this.elements;e[0] = 1;   e[4] = 0;   e[8]  = 0;   e[12] = 0;e[1] = 0;   e[5] = 1;   e[9]  = 0;   e[13] = 0;e[2] = 0;   e[6] = 0;   e[10] = 1;   e[14] = 0;e[3] = 0;   e[7] = 0;   e[11] = 0;   e[15] = 1;return this;
};/*** Copy matrix.* @param src source matrix* @return this*/
Matrix4.prototype.set = function(src) {var i, s, d;s = src.elements;d = this.elements;if (s === d) {return;}for (i = 0; i < 16; ++i) {d[i] = s[i];}return this;
};/*** Multiply the matrix from the right.* @param other The multiply matrix* @return this*/
Matrix4.prototype.concat = function(other) {var i, e, a, b, ai0, ai1, ai2, ai3;// Calculate e = a * be = this.elements;a = this.elements;b = other.elements;// If e equals b, copy b to temporary matrix.if (e === b) {b = new Float32Array(16);for (i = 0; i < 16; ++i) {b[i] = e[i];}}for (i = 0; i < 4; i++) {ai0=a[i];  ai1=a[i+4];  ai2=a[i+8];  ai3=a[i+12];e[i]    = ai0 * b[0]  + ai1 * b[1]  + ai2 * b[2]  + ai3 * b[3];e[i+4]  = ai0 * b[4]  + ai1 * b[5]  + ai2 * b[6]  + ai3 * b[7];e[i+8]  = ai0 * b[8]  + ai1 * b[9]  + ai2 * b[10] + ai3 * b[11];e[i+12] = ai0 * b[12] + ai1 * b[13] + ai2 * b[14] + ai3 * b[15];}return this;
};
Matrix4.prototype.multiply = Matrix4.prototype.concat;/*** Multiply the three-dimensional vector.* @param pos  The multiply vector* @return The result of multiplication(Float32Array)*/
Matrix4.prototype.multiplyVector3 = function(pos) {var e = this.elements;var p = pos.elements;var v = new Vector3();var result = v.elements;result[0] = p[0] * e[0] + p[1] * e[4] + p[2] * e[ 8] + e[12];result[1] = p[0] * e[1] + p[1] * e[5] + p[2] * e[ 9] + e[13];result[2] = p[0] * e[2] + p[1] * e[6] + p[2] * e[10] + e[14];return v;
};/*** Multiply the four-dimensional vector.* @param pos  The multiply vector* @return The result of multiplication(Float32Array)*/
Matrix4.prototype.multiplyVector4 = function(pos) {var e = this.elements;var p = pos.elements;var v = new Vector4();var result = v.elements;result[0] = p[0] * e[0] + p[1] * e[4] + p[2] * e[ 8] + p[3] * e[12];result[1] = p[0] * e[1] + p[1] * e[5] + p[2] * e[ 9] + p[3] * e[13];result[2] = p[0] * e[2] + p[1] * e[6] + p[2] * e[10] + p[3] * e[14];result[3] = p[0] * e[3] + p[1] * e[7] + p[2] * e[11] + p[3] * e[15];return v;
};/*** Transpose the matrix.* @return this*/
Matrix4.prototype.transpose = function() {var e, t;e = this.elements;t = e[ 1];  e[ 1] = e[ 4];  e[ 4] = t;t = e[ 2];  e[ 2] = e[ 8];  e[ 8] = t;t = e[ 3];  e[ 3] = e[12];  e[12] = t;t = e[ 6];  e[ 6] = e[ 9];  e[ 9] = t;t = e[ 7];  e[ 7] = e[13];  e[13] = t;t = e[11];  e[11] = e[14];  e[14] = t;return this;
};/*** Calculate the inverse matrix of specified matrix, and set to this.* @param other The source matrix* @return this*/
Matrix4.prototype.setInverseOf = function(other) {var i, s, d, inv, det;s = other.elements;d = this.elements;inv = new Float32Array(16);inv[0]  =   s[5]*s[10]*s[15] - s[5] *s[11]*s[14] - s[9] *s[6]*s[15]+ s[9]*s[7] *s[14] + s[13]*s[6] *s[11] - s[13]*s[7]*s[10];inv[4]  = - s[4]*s[10]*s[15] + s[4] *s[11]*s[14] + s[8] *s[6]*s[15]- s[8]*s[7] *s[14] - s[12]*s[6] *s[11] + s[12]*s[7]*s[10];inv[8]  =   s[4]*s[9] *s[15] - s[4] *s[11]*s[13] - s[8] *s[5]*s[15]+ s[8]*s[7] *s[13] + s[12]*s[5] *s[11] - s[12]*s[7]*s[9];inv[12] = - s[4]*s[9] *s[14] + s[4] *s[10]*s[13] + s[8] *s[5]*s[14]- s[8]*s[6] *s[13] - s[12]*s[5] *s[10] + s[12]*s[6]*s[9];inv[1]  = - s[1]*s[10]*s[15] + s[1] *s[11]*s[14] + s[9] *s[2]*s[15]- s[9]*s[3] *s[14] - s[13]*s[2] *s[11] + s[13]*s[3]*s[10];inv[5]  =   s[0]*s[10]*s[15] - s[0] *s[11]*s[14] - s[8] *s[2]*s[15]+ s[8]*s[3] *s[14] + s[12]*s[2] *s[11] - s[12]*s[3]*s[10];inv[9]  = - s[0]*s[9] *s[15] + s[0] *s[11]*s[13] + s[8] *s[1]*s[15]- s[8]*s[3] *s[13] - s[12]*s[1] *s[11] + s[12]*s[3]*s[9];inv[13] =   s[0]*s[9] *s[14] - s[0] *s[10]*s[13] - s[8] *s[1]*s[14]+ s[8]*s[2] *s[13] + s[12]*s[1] *s[10] - s[12]*s[2]*s[9];inv[2]  =   s[1]*s[6]*s[15] - s[1] *s[7]*s[14] - s[5] *s[2]*s[15]+ s[5]*s[3]*s[14] + s[13]*s[2]*s[7]  - s[13]*s[3]*s[6];inv[6]  = - s[0]*s[6]*s[15] + s[0] *s[7]*s[14] + s[4] *s[2]*s[15]- s[4]*s[3]*s[14] - s[12]*s[2]*s[7]  + s[12]*s[3]*s[6];inv[10] =   s[0]*s[5]*s[15] - s[0] *s[7]*s[13] - s[4] *s[1]*s[15]+ s[4]*s[3]*s[13] + s[12]*s[1]*s[7]  - s[12]*s[3]*s[5];inv[14] = - s[0]*s[5]*s[14] + s[0] *s[6]*s[13] + s[4] *s[1]*s[14]- s[4]*s[2]*s[13] - s[12]*s[1]*s[6]  + s[12]*s[2]*s[5];inv[3]  = - s[1]*s[6]*s[11] + s[1]*s[7]*s[10] + s[5]*s[2]*s[11]- s[5]*s[3]*s[10] - s[9]*s[2]*s[7]  + s[9]*s[3]*s[6];inv[7]  =   s[0]*s[6]*s[11] - s[0]*s[7]*s[10] - s[4]*s[2]*s[11]+ s[4]*s[3]*s[10] + s[8]*s[2]*s[7]  - s[8]*s[3]*s[6];inv[11] = - s[0]*s[5]*s[11] + s[0]*s[7]*s[9]  + s[4]*s[1]*s[11]- s[4]*s[3]*s[9]  - s[8]*s[1]*s[7]  + s[8]*s[3]*s[5];inv[15] =   s[0]*s[5]*s[10] - s[0]*s[6]*s[9]  - s[4]*s[1]*s[10]+ s[4]*s[2]*s[9]  + s[8]*s[1]*s[6]  - s[8]*s[2]*s[5];det = s[0]*inv[0] + s[1]*inv[4] + s[2]*inv[8] + s[3]*inv[12];if (det === 0) {return this;}det = 1 / det;for (i = 0; i < 16; i++) {d[i] = inv[i] * det;}return this;
};/*** Calculate the inverse matrix of this, and set to this.* @return this*/
Matrix4.prototype.invert = function() {return this.setInverseOf(this);
};/*** Set the orthographic projection matrix.* @param left The coordinate of the left of clipping plane.* @param right The coordinate of the right of clipping plane.* @param bottom The coordinate of the bottom of clipping plane.* @param top The coordinate of the top top clipping plane.* @param near The distances to the nearer depth clipping plane. This value is minus if the plane is to be behind the viewer.* @param far The distances to the farther depth clipping plane. This value is minus if the plane is to be behind the viewer.* @return this*/
Matrix4.prototype.setOrtho = function(left, right, bottom, top, near, far) {var e, rw, rh, rd;if (left === right || bottom === top || near === far) {throw 'null frustum';}rw = 1 / (right - left);rh = 1 / (top - bottom);rd = 1 / (far - near);e = this.elements;e[0]  = 2 * rw;e[1]  = 0;e[2]  = 0;e[3]  = 0;e[4]  = 0;e[5]  = 2 * rh;e[6]  = 0;e[7]  = 0;e[8]  = 0;e[9]  = 0;e[10] = -2 * rd;e[11] = 0;e[12] = -(right + left) * rw;e[13] = -(top + bottom) * rh;e[14] = -(far + near) * rd;e[15] = 1;return this;
};/*** Multiply the orthographic projection matrix from the right.* @param left The coordinate of the left of clipping plane.* @param right The coordinate of the right of clipping plane.* @param bottom The coordinate of the bottom of clipping plane.* @param top The coordinate of the top top clipping plane.* @param near The distances to the nearer depth clipping plane. This value is minus if the plane is to be behind the viewer.* @param far The distances to the farther depth clipping plane. This value is minus if the plane is to be behind the viewer.* @return this*/
Matrix4.prototype.ortho = function(left, right, bottom, top, near, far) {return this.concat(new Matrix4().setOrtho(left, right, bottom, top, near, far));
};/*** Set the perspective projection matrix.* @param left The coordinate of the left of clipping plane.* @param right The coordinate of the right of clipping plane.* @param bottom The coordinate of the bottom of clipping plane.* @param top The coordinate of the top top clipping plane.* @param near The distances to the nearer depth clipping plane. This value must be plus value.* @param far The distances to the farther depth clipping plane. This value must be plus value.* @return this*/
Matrix4.prototype.setFrustum = function(left, right, bottom, top, near, far) {var e, rw, rh, rd;if (left === right || top === bottom || near === far) {throw 'null frustum';}if (near <= 0) {throw 'near <= 0';}if (far <= 0) {throw 'far <= 0';}rw = 1 / (right - left);rh = 1 / (top - bottom);rd = 1 / (far - near);e = this.elements;e[ 0] = 2 * near * rw;e[ 1] = 0;e[ 2] = 0;e[ 3] = 0;e[ 4] = 0;e[ 5] = 2 * near * rh;e[ 6] = 0;e[ 7] = 0;e[ 8] = (right + left) * rw;e[ 9] = (top + bottom) * rh;e[10] = -(far + near) * rd;e[11] = -1;e[12] = 0;e[13] = 0;e[14] = -2 * near * far * rd;e[15] = 0;return this;
};/*** Multiply the perspective projection matrix from the right.* @param left The coordinate of the left of clipping plane.* @param right The coordinate of the right of clipping plane.* @param bottom The coordinate of the bottom of clipping plane.* @param top The coordinate of the top top clipping plane.* @param near The distances to the nearer depth clipping plane. This value must be plus value.* @param far The distances to the farther depth clipping plane. This value must be plus value.* @return this*/
Matrix4.prototype.frustum = function(left, right, bottom, top, near, far) {return this.concat(new Matrix4().setFrustum(left, right, bottom, top, near, far));
};/*** Set the perspective projection matrix by fovy and aspect.* @param fovy The angle between the upper and lower sides of the frustum.* @param aspect The aspect ratio of the frustum. (width/height)* @param near The distances to the nearer depth clipping plane. This value must be plus value.* @param far The distances to the farther depth clipping plane. This value must be plus value.* @return this*/
Matrix4.prototype.setPerspective = function(fovy, aspect, near, far) {var e, rd, s, ct;if (near === far || aspect === 0) {throw 'null frustum';}if (near <= 0) {throw 'near <= 0';}if (far <= 0) {throw 'far <= 0';}fovy = Math.PI * fovy / 180 / 2;s = Math.sin(fovy);if (s === 0) {throw 'null frustum';}rd = 1 / (far - near);ct = Math.cos(fovy) / s;e = this.elements;e[0]  = ct / aspect;e[1]  = 0;e[2]  = 0;e[3]  = 0;e[4]  = 0;e[5]  = ct;e[6]  = 0;e[7]  = 0;e[8]  = 0;e[9]  = 0;e[10] = -(far + near) * rd;e[11] = -1;e[12] = 0;e[13] = 0;e[14] = -2 * near * far * rd;e[15] = 0;return this;
};/*** Multiply the perspective projection matrix from the right.* @param fovy The angle between the upper and lower sides of the frustum.* @param aspect The aspect ratio of the frustum. (width/height)* @param near The distances to the nearer depth clipping plane. This value must be plus value.* @param far The distances to the farther depth clipping plane. This value must be plus value.* @return this*/
Matrix4.prototype.perspective = function(fovy, aspect, near, far) {return this.concat(new Matrix4().setPerspective(fovy, aspect, near, far));
};/*** Set the matrix for scaling.* @param x The scale factor along the X axis* @param y The scale factor along the Y axis* @param z The scale factor along the Z axis* @return this*/
Matrix4.prototype.setScale = function(x, y, z) {var e = this.elements;e[0] = x;  e[4] = 0;  e[8]  = 0;  e[12] = 0;e[1] = 0;  e[5] = y;  e[9]  = 0;  e[13] = 0;e[2] = 0;  e[6] = 0;  e[10] = z;  e[14] = 0;e[3] = 0;  e[7] = 0;  e[11] = 0;  e[15] = 1;return this;
};/*** Multiply the matrix for scaling from the right.* @param x The scale factor along the X axis* @param y The scale factor along the Y axis* @param z The scale factor along the Z axis* @return this*/
Matrix4.prototype.scale = function(x, y, z) {var e = this.elements;e[0] *= x;  e[4] *= y;  e[8]  *= z;e[1] *= x;  e[5] *= y;  e[9]  *= z;e[2] *= x;  e[6] *= y;  e[10] *= z;e[3] *= x;  e[7] *= y;  e[11] *= z;return this;
};/*** Set the matrix for translation.* @param x The X value of a translation.* @param y The Y value of a translation.* @param z The Z value of a translation.* @return this*/
Matrix4.prototype.setTranslate = function(x, y, z) {var e = this.elements;e[0] = 1;  e[4] = 0;  e[8]  = 0;  e[12] = x;e[1] = 0;  e[5] = 1;  e[9]  = 0;  e[13] = y;e[2] = 0;  e[6] = 0;  e[10] = 1;  e[14] = z;e[3] = 0;  e[7] = 0;  e[11] = 0;  e[15] = 1;return this;
};/*** Multiply the matrix for translation from the right.* @param x The X value of a translation.* @param y The Y value of a translation.* @param z The Z value of a translation.* @return this*/
Matrix4.prototype.translate = function(x, y, z) {var e = this.elements;e[12] += e[0] * x + e[4] * y + e[8]  * z;e[13] += e[1] * x + e[5] * y + e[9]  * z;e[14] += e[2] * x + e[6] * y + e[10] * z;e[15] += e[3] * x + e[7] * y + e[11] * z;return this;
};/*** Set the matrix for rotation.* The vector of rotation axis may not be normalized.* @param angle The angle of rotation (degrees)* @param x The X coordinate of vector of rotation axis.* @param y The Y coordinate of vector of rotation axis.* @param z The Z coordinate of vector of rotation axis.* @return this*/
Matrix4.prototype.setRotate = function(angle, x, y, z) {var e, s, c, len, rlen, nc, xy, yz, zx, xs, ys, zs;angle = Math.PI * angle / 180;e = this.elements;s = Math.sin(angle);c = Math.cos(angle);if (0 !== x && 0 === y && 0 === z) {// Rotation around X axisif (x < 0) {s = -s;}e[0] = 1;  e[4] = 0;  e[ 8] = 0;  e[12] = 0;e[1] = 0;  e[5] = c;  e[ 9] =-s;  e[13] = 0;e[2] = 0;  e[6] = s;  e[10] = c;  e[14] = 0;e[3] = 0;  e[7] = 0;  e[11] = 0;  e[15] = 1;} else if (0 === x && 0 !== y && 0 === z) {// Rotation around Y axisif (y < 0) {s = -s;}e[0] = c;  e[4] = 0;  e[ 8] = s;  e[12] = 0;e[1] = 0;  e[5] = 1;  e[ 9] = 0;  e[13] = 0;e[2] =-s;  e[6] = 0;  e[10] = c;  e[14] = 0;e[3] = 0;  e[7] = 0;  e[11] = 0;  e[15] = 1;} else if (0 === x && 0 === y && 0 !== z) {// Rotation around Z axisif (z < 0) {s = -s;}e[0] = c;  e[4] =-s;  e[ 8] = 0;  e[12] = 0;e[1] = s;  e[5] = c;  e[ 9] = 0;  e[13] = 0;e[2] = 0;  e[6] = 0;  e[10] = 1;  e[14] = 0;e[3] = 0;  e[7] = 0;  e[11] = 0;  e[15] = 1;} else {// Rotation around another axislen = Math.sqrt(x*x + y*y + z*z);if (len !== 1) {rlen = 1 / len;x *= rlen;y *= rlen;z *= rlen;}nc = 1 - c;xy = x * y;yz = y * z;zx = z * x;xs = x * s;ys = y * s;zs = z * s;e[ 0] = x*x*nc +  c;e[ 1] = xy *nc + zs;e[ 2] = zx *nc - ys;e[ 3] = 0;e[ 4] = xy *nc - zs;e[ 5] = y*y*nc +  c;e[ 6] = yz *nc + xs;e[ 7] = 0;e[ 8] = zx *nc + ys;e[ 9] = yz *nc - xs;e[10] = z*z*nc +  c;e[11] = 0;e[12] = 0;e[13] = 0;e[14] = 0;e[15] = 1;}return this;
};/*** Multiply the matrix for rotation from the right.* The vector of rotation axis may not be normalized.* @param angle The angle of rotation (degrees)* @param x The X coordinate of vector of rotation axis.* @param y The Y coordinate of vector of rotation axis.* @param z The Z coordinate of vector of rotation axis.* @return this*/
Matrix4.prototype.rotate = function(angle, x, y, z) {return this.concat(new Matrix4().setRotate(angle, x, y, z));
};/*** Set the viewing matrix.* @param eyeX, eyeY, eyeZ The position of the eye point.* @param centerX, centerY, centerZ The position of the reference point.* @param upX, upY, upZ The direction of the up vector.* @return this*/
Matrix4.prototype.setLookAt = function(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ) {var e, fx, fy, fz, rlf, sx, sy, sz, rls, ux, uy, uz;fx = centerX - eyeX;fy = centerY - eyeY;fz = centerZ - eyeZ;// Normalize f.rlf = 1 / Math.sqrt(fx*fx + fy*fy + fz*fz);fx *= rlf;fy *= rlf;fz *= rlf;// Calculate cross product of f and up.sx = fy * upZ - fz * upY;sy = fz * upX - fx * upZ;sz = fx * upY - fy * upX;// Normalize s.rls = 1 / Math.sqrt(sx*sx + sy*sy + sz*sz);sx *= rls;sy *= rls;sz *= rls;// Calculate cross product of s and f.ux = sy * fz - sz * fy;uy = sz * fx - sx * fz;uz = sx * fy - sy * fx;// Set to this.e = this.elements;e[0] = sx;e[1] = ux;e[2] = -fx;e[3] = 0;e[4] = sy;e[5] = uy;e[6] = -fy;e[7] = 0;e[8] = sz;e[9] = uz;e[10] = -fz;e[11] = 0;e[12] = 0;e[13] = 0;e[14] = 0;e[15] = 1;// Translate.return this.translate(-eyeX, -eyeY, -eyeZ);
};/*** Multiply the viewing matrix from the right.* @param eyeX, eyeY, eyeZ The position of the eye point.* @param centerX, centerY, centerZ The position of the reference point.* @param upX, upY, upZ The direction of the up vector.* @return this*/
Matrix4.prototype.lookAt = function(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ) {return this.concat(new Matrix4().setLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ));
};/*** Multiply the matrix for project vertex to plane from the right.* @param plane The array[A, B, C, D] of the equation of plane "Ax + By + Cz + D = 0".* @param light The array which stored coordinates of the light. if light[3]=0, treated as parallel light.* @return this*/
Matrix4.prototype.dropShadow = function(plane, light) {var mat = new Matrix4();var e = mat.elements;var dot = plane[0] * light[0] + plane[1] * light[1] + plane[2] * light[2] + plane[3] * light[3];e[ 0] = dot - light[0] * plane[0];e[ 1] =     - light[1] * plane[0];e[ 2] =     - light[2] * plane[0];e[ 3] =     - light[3] * plane[0];e[ 4] =     - light[0] * plane[1];e[ 5] = dot - light[1] * plane[1];e[ 6] =     - light[2] * plane[1];e[ 7] =     - light[3] * plane[1];e[ 8] =     - light[0] * plane[2];e[ 9] =     - light[1] * plane[2];e[10] = dot - light[2] * plane[2];e[11] =     - light[3] * plane[2];e[12] =     - light[0] * plane[3];e[13] =     - light[1] * plane[3];e[14] =     - light[2] * plane[3];e[15] = dot - light[3] * plane[3];return this.concat(mat);
}/*** Multiply the matrix for project vertex to plane from the right.(Projected by parallel light.)* @param normX, normY, normZ The normal vector of the plane.(Not necessary to be normalized.)* @param planeX, planeY, planeZ The coordinate of arbitrary points on a plane.* @param lightX, lightY, lightZ The vector of the direction of light.(Not necessary to be normalized.)* @return this*/
Matrix4.prototype.dropShadowDirectionally = function(normX, normY, normZ, planeX, planeY, planeZ, lightX, lightY, lightZ) {var a = planeX * normX + planeY * normY + planeZ * normZ;return this.dropShadow([normX, normY, normZ, -a], [lightX, lightY, lightZ, 0]);
};/*** Constructor of Vector3* If opt_src is specified, new vector is initialized by opt_src.* @param opt_src source vector(option)*/
var Vector3 = function(opt_src) {var v = new Float32Array(3);if (opt_src && typeof opt_src === 'object') {v[0] = opt_src[0]; v[1] = opt_src[1]; v[2] = opt_src[2];} this.elements = v;
}/*** Normalize.* @return this*/
Vector3.prototype.normalize = function() {var v = this.elements;var c = v[0], d = v[1], e = v[2], g = Math.sqrt(c*c+d*d+e*e);if(g){if(g == 1)return this;} else {v[0] = 0; v[1] = 0; v[2] = 0;return this;}g = 1/g;v[0] = c*g; v[1] = d*g; v[2] = e*g;return this;
};/*** Constructor of Vector4* If opt_src is specified, new vector is initialized by opt_src.* @param opt_src source vector(option)*/
var Vector4 = function(opt_src) {var v = new Float32Array(4);if (opt_src && typeof opt_src === 'object') {v[0] = opt_src[0]; v[1] = opt_src[1]; v[2] = opt_src[2]; v[3] = opt_src[3];} this.elements = v;
}

Matrix4对象所支持的方法和属性如表所示:

* 单位阵在矩阵乘法中的行为,就像数字1在乘法中的行为一样。将一个矩阵乘以单位阵,得到的结果和原矩阵完全相同。在单位阵中,对角线上的元素为1.0,其余的元素为0.0。

方法属性规范: 

从上表中可见,Matrix4对象有两种方法:一种方法的名称中含有前缀set,另一种则不含。包含set前缀的方法会根据参数计算出变换矩阵,然后将变换矩阵写入到自身中;而不含set前缀的方法,会先根据参数计算出变换矩阵,然后将自身与刚刚计算得到的变换矩阵相乘,然后把最终得到的结果再写入到Matrix4对象中。

如上表所示,Matrix4对象的方法十分强大且灵活。更重要的是,有了这些函数,进行变换就会变得轻而易举。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/111338.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker 轻量级可视化工具Portainer

1. 是什么 Portainer 是一款轻量级的应用&#xff0c;它提供了图形化界面&#xff0c;用于方便地管理Docker环境&#xff0c;包括单机环境和集群环境。 2. 安装 2.1 官网 https://www.protainer.io/ https://docs.portainer.io/ce-2.9/start/install/server/docker/linux 2.2 …

基于 vue2 发布 npm包

背景&#xff1a;组件化开发需要&#xff0c;走了一遍发布npm包的过程&#xff0c;采用很简单的模式实现包的发布流程&#xff0c;记录如下。 项目参考&#xff1a;基于vue的时间播放器组件&#xff0c;并发布到npm_timeplay.js_xmy_wh的博客-CSDN博客 1、项目初始化 首先&a…

基于React实现日历组件详细教程

前言 日历组件是常见的日期时间相关的组件&#xff0c;围绕日历组件设计师做出过各种尝试&#xff0c;展示的形式也是五花八门。但是对于前端开发者来讲&#xff0c;主要我们能够掌握核心思路&#xff0c;不管多么奇葩的设计我们都能够把它做出来。 本文将详细分析如何渲染一…

【LeetCode】227. 基本计算器 II

227. 基本计算器 II&#xff08;中等&#xff09; 方法&#xff1a;双栈解法 思路 我们可以使用两个栈 nums 和 ops 。 nums &#xff1a; 存放所有的数字ops &#xff1a;存放所有的数字以外的操作 然后从前往后做&#xff0c;对遍历到的字符做分情况讨论&#xff1a; 空格 …

springboot 基于JAVA的动漫周边商城的设计与实现64n21

动漫周边商城分为二个模块&#xff0c;分别是管理员功能模块和用户功能模块。管理员功能模块包括&#xff1a;文章资讯、文章类型、动漫活动、动漫商品功能&#xff0c;用户功能模块包括&#xff1a;文章资讯、动漫活动、动漫商品、购物车&#xff0c;传统的管理方式对时间、地…

2023-08-28 LeetCode每日一题(插入区间)

2023-08-28每日一题 一、题目编号 57. 插入区间二、题目链接 点击跳转到题目位置 三、题目描述 给你一个 无重叠的 &#xff0c;按照区间起始端点排序的区间列表。 在列表中插入一个新的区间&#xff0c;你需要确保列表中的区间仍然有序且不重叠&#xff08;如果有必要的…

暴力递归转动态规划(二)

上一篇已经简单的介绍了暴力递归如何转动态规划&#xff0c;如果在暴力递归的过程中发现子过程中有重复解的情况&#xff0c;则证明这个暴力递归可以转化成动态规划。 这篇帖子会继续暴力递归转化动态规划的练习&#xff0c;这道题有点难度。 题目 给定一个整型数组arr[]&…

element-ui 弹窗里面嵌套弹窗,解决第二个弹窗被遮罩层掩盖无法显示的问题

当我们在 element-ui 中使用弹窗嵌套弹窗时&#xff0c;会出现第二个弹窗打开时被一个遮罩层挡着&#xff0c;就像下面这样&#xff1a; 下面提供两种解决方案 &#xff1a; 一、第一种方案 我们查询element-ui 官网可以发现 el-dialog 有这样几个属性&#xff1a; 具体使用就…

hadoop 学习:mapreduce 入门案例三:顾客信息与订单信息相关联(联表)

这里的知识点在于如何合并两张表&#xff0c;事实上这种业务场景我们很熟悉了&#xff0c;这就是我们在学习 MySQL 的时候接触到的内连接&#xff0c;左连接&#xff0c;而现在我们要学习 mapreduce 中的做法 这里我们可以选择在 map 阶段和reduce阶段去做 数据&#xff1a; …

java版工程项目管理系统源码+系统管理+系统设置+项目管理+合同管理+二次开发

工程项目各模块及其功能点清单 一、系统管理 1、数据字典&#xff1a;实现对数据字典标签的增删改查操作 2、编码管理&#xff1a;实现对系统编码的增删改查操作 3、用户管理&#xff1a;管理和查看用户角色 4、菜单管理&#xff1a;实现对系统菜单的增删改查操…

人工智能会成为人类的威胁吗?马斯克、扎克伯格、比尔·盖茨出席

根据消息人士透露&#xff0c;此次人工智能洞察论坛将是一次历史性的聚会&#xff0c;吸引了来自科技界的许多重量级人物。与会者们将共同探讨人工智能在科技行业和社会发展中的巨大潜力以及可能带来的挑战。 埃隆马斯克&#xff0c;特斯拉和SpaceX的首席执行官&#xff0c;一直…

如何提高视频清晰度?视频调整清晰度操作方法

现在很多小伙伴通过制作短视频发布到一些短视频平台上记录生活&#xff0c;分享趣事。但制作的视频有些比较模糊&#xff0c;做视频的小伙伴应该都知道&#xff0c;视频画质模糊不清&#xff0c;会严重影响观众的观看体验。 通过研究&#xff0c;总结了以下几点严重影响的点 …

Android12之ABuffer数据处理(三十四)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生从来没有捷径,只有行动才是治疗恐惧和懒惰的唯一良药. 更多原创,欢迎关注:Android…

Nacos集群搭建

集群结构 三个nacos节点的地址&#xff1a; 节点ipportnacos1127.0.0.18845nacos2127.0.0.18846nacos3127.0.0.18847 集群步骤 搭建集群的基本步骤&#xff1a; 搭建数据库&#xff0c;初始化数据库表结构 下载nacos安装包 配置nacos 启动nacos集群 nginx反向代理 初始化…

02调制+滤波器+冲激函数的傅立叶变换

目录 一、调制方式 1.1 什么是调制&#xff1f; 1.2 为什么要调制&#xff1f; 1.3 如何调制&#xff1f; 1.4 调制包含的信号类型&#xff1f; 1. 消息信号 2. 载波信号 3. 调制信号 1.5 调制类型&#xff1f; 1. 调幅 2. 调频 3. 调相 4. 模拟脉冲调制 5. 脉冲…

WSL Opencv with_ffmpeg conan1.60.0

我是ubuntu18. self.options[“opencv”].with_ffmpeg True 关键是gcc版本需要conan支持&#xff0c;比如我的是&#xff1a; compilergcc compiler.version7.5 此外还需要安装系统所需库&#xff1a; https://qq742971636.blog.csdn.net/article/details/132559789 甚至来…

C# NetTopologySuite+ProjNet 任意图形类型坐标转换

添加引用&#xff1a;NetTopologySuite、ProjNet、ProjNet.SRID Program.cs文件&#xff1a; using ProjNet.CoordinateSystems; using ProjNet.CoordinateSystems.Transformations; using ProjNet.SRID; using System; using System.Collections.Generic; using System.Linq;…

unordered-------Hash

✅<1>主页&#xff1a;我的代码爱吃辣&#x1f4c3;<2>知识讲解&#xff1a;数据结构——哈希表☂️<3>开发环境&#xff1a;Visual Studio 2022&#x1f4ac;<4>前言&#xff1a;哈希是一种映射的思想&#xff0c;哈希表即使利用这种思想&#xff0c;…

前端基础1——HTML标记语言

文章目录 一、基本了解二、HTML常用标签2.1 文本格式化标签2.2 列表标签2.3 超链接标签2.4 图片标签2.5 表格标签2.6 表单标签2.6.1 提交表单2.6.2 下拉表单2.6.3 按钮标签 2.7 布局标签 一、基本了解 网页组成&#xff08;index.html页面&#xff09;&#xff1a; HTML标记语言…

Verilog开源项目——百兆以太网交换机(一)架构设计与Feature定义

Verilog开源项目——百兆以太网交换机&#xff08;一&#xff09;架构设计与Feature定义 &#x1f508;声明&#xff1a;未经作者允许&#xff0c;禁止转载 &#x1f603;博主主页&#xff1a;王_嘻嘻的CSDN主页 &#x1f511;全新原创以太网交换机项目&#xff0c;Blog内容将聚…