机器学习笔记之核函数再回首:Nadarya-Watson核回归python手写示例

机器学习笔记之核函数再回首——Nadaraya-Watson核回归手写示例

引言

本节从代码角度,介绍基于高维特征向量使用 Nadaraya-Watson \text{Nadaraya-Watson} Nadaraya-Watson核回归的示例。

回顾: Nadaraya-Watson \text{Nadaraya-Watson} Nadaraya-Watson核回归

在注意力机制基本介绍中,我们提到过这种基于注意力机制权重懒惰学习方法。该方法与注意力机制关联的核心操作有如下步骤:

通过核函数描述样本之间的关联关系

我们想要主观获取某陌生样本 x ∈ R p x \in \mathbb R^p xRp数据集内各样本 x ( i ) ∈ D = { x ( i ) , y ( i ) } i = 1 N , x ( i ) ∈ R p x^{(i)} \in \mathcal D = \{x^{(i)},y^{(i)}\}_{i=1}^N,x^{(i)} \in \mathbb R^p x(i)D={x(i),y(i)}i=1N,x(i)Rp之间的关联关系。而这种描述关联关系的操作,我们首先会想到内积
x ⋅ x ( i ) = x T [ x ( i ) ] x \cdot x^{(i)} = x^T [x^{(i)}] xx(i)=xT[x(i)]
如果涉及到一个非线性问题——或者说仅仅使用内积对关联关系的表达不够丰富,可以通过高维特征转换非线性问题转化为高维线性问题
{ x ⇒ ϕ ( x ) x ( i ) = ϕ ( x ( i ) ) ( i = 1 , 2 , ⋯ , N ) x T [ x ( i ) ] ⇒ [ ϕ ( x ) ] T ϕ ( x ( i ) ) \begin{cases} x \Rightarrow \phi(x) \\x^{(i)} = \phi(x^{(i)})(i=1,2,\cdots,N) \\ x^T[x^{(i)}] \Rightarrow [\phi(x)]^T \phi(x^{(i)}) \end{cases} xϕ(x)x(i)=ϕ(x(i))(i=1,2,,N)xT[x(i)][ϕ(x)]Tϕ(x(i))
低维特征转化为高维特征同样存在弊端。在核方法思想与核函数中介绍过:映射后的特征结果 ϕ ( x ) , \phi(x), ϕ(x),其特征维数远远超过原始特征维数 p p p,甚至是无限维。在这种情况下去计算 [ ϕ ( x ) ] T ϕ ( x ( i ) ) [\phi(x)]^T \phi(x^{(i)}) [ϕ(x)]Tϕ(x(i)),其计算代价是无法估量的。而核技巧提供了一种简化运算的方式。关于核函数 κ ( ⋅ ) \kappa(\cdot) κ()的定义表示如下:
κ [ x , x ( i ) ] = ⟨ ϕ ( x ) , ϕ ( x ( i ) ) ⟩ = [ ϕ ( x ) ] T ϕ ( x ( i ) ) \kappa \left[x,x^{(i)}\right] = \left\langle\phi(x),\phi(x^{(i)})\right\rangle= [\phi(x)]^T \phi(x^{(i)}) κ[x,x(i)]=ϕ(x),ϕ(x(i))=[ϕ(x)]Tϕ(x(i))
可以看出:核函数 κ ( ⋅ ) \kappa(\cdot) κ()的自变量是未经过高维转换的原始特征;而对应函数是高维转换后的内积结果。因而该函数的作用可以简化运算。最终我们可以通过核函数描述 x x x与数据集内所有样本 x ( i ) ( i = 1 , 2 , ⋯ , N ) x^{(i)}(i=1,2,\cdots,N) x(i)(i=1,2,,N)之间的关联关系
κ [ x , x ( i ) ] i = 1 , 2 , ⋯ , N \kappa \left[x,x^{(i)}\right] \quad i=1,2,\cdots,N κ[x,x(i)]i=1,2,,N

使用 Softmax \text{Softmax} Softmax函数对权重进行划分

此时已经得到 x x x所有样本 x ( i ) x^{(i)} x(i)核函数结果,这 N N N个结果有大有小,数值大的意味着样本之间的关联程度。从而可以将关联关系描述成 x x x与样本 x ( i ) x^{(i)} x(i)对应标签结果 y ( i ) y^{(i)} y(i)的权重 G ( x , x ( i ) ) \mathcal G(x,x^{(i)}) G(x,x(i))
G ( x , x ( i ) ) = κ ( x , x ( i ) ) ∑ j = 1 N κ ( x , x ( j ) ) \mathcal G(x,x^{(i)}) = \frac{\kappa(x,x^{(i)})}{\sum_{j=1}^{N}\kappa(x,x^{(j)})} G(x,x(i))=j=1Nκ(x,x(j))κ(x,x(i))
关于权重 G ( x , x ( i ) ) \mathcal G(x,x^{(i)}) G(x,x(i)),必然有如下结果:
∑ i = 1 N G ( x , x ( i ) ) = ∑ i = 1 N κ ( x , x ( i ) ) ∑ i = 1 N κ ( x , x ( i ) ) = 1 \sum_{i=1}^N \mathcal G(x,x^{(i)}) = \frac{\sum_{i=1}^{N} \kappa(x,x^{(i)})}{\sum_{i=1}^{N} \kappa(x,x^{(i)})} = 1 i=1NG(x,x(i))=i=1Nκ(x,x(i))i=1Nκ(x,x(i))=1
为什么是 Softmax \text{Softmax} Softmax函数呢——如果该核函数是一个指数函数。例如高斯核函数
将大括号内的项视作 Δ ( i ) \Delta^{(i)} Δ(i)
κ ( x , x ( i ) ) = exp ⁡ { − 1 2 σ 2 ∥ x − x ( i ) ∥ 2 ⏟ Δ ( i ) } \kappa (x,x^{(i)}) = \exp \left\{\underbrace{- \frac{1}{2 \sigma^2} \left\|x - x^{(i)} \right\|^2 }_{\Delta^{(i)}}\right\} κ(x,x(i))=exp Δ(i) 2σ21 xx(i) 2
那么 G ( x , x ( i ) ) \mathcal G(x,x^{(i)}) G(x,x(i))可表示为:
G ( x , x ( i ) ) = exp ⁡ { Δ ( i ) } ∑ j = 1 N exp ⁡ { Δ ( j ) } = Softmax ( Δ ( i ) ) \mathcal G(x,x^{(i)}) = \frac{\exp \{\Delta^{(i)}\}}{\sum_{j=1}^N \exp\{\Delta^{(j)}\}} = \text{Softmax}(\Delta^{(i)}) G(x,x(i))=j=1Nexp{Δ(j)}exp{Δ(i)}=Softmax(Δ(i))
最终可以得到如下权重向量
G ( x , D ) = [ κ ( x , x ( 1 ) ) ∑ j = 1 N κ ( x , x ( j ) ) , ⋯ , κ ( x , x ( N ) ) ∑ j = 1 N κ ( x , x ( j ) ) ] 1 × N \mathcal G(x,\mathcal D) = \left[\frac{\kappa(x,x^{(1)})}{\sum_{j=1}^N \kappa(x,x^{(j)})},\cdots,\frac{\kappa (x,x^{(N)})}{\sum_{j=1}^N \kappa(x,x^{(j)})} \right]_{1 \times N} G(x,D)=[j=1Nκ(x,x(j))κ(x,x(1)),,j=1Nκ(x,x(j))κ(x,x(N))]1×N

将权重与相应标签执行加权运算

得到权重向量 G ( x , D ) \mathcal G(x,\mathcal D) G(x,D)后,与对应标签向量 Y = ( y ( 1 ) , ⋯ , y ( N ) ) T \mathcal Y = (y^{(1)},\cdots,y^{(N)})^T Y=(y(1),,y(N))T内积运算,得到关于陌生样本 x x x的预测结果 f ( x ) f(x) f(x)
本质上就是关于标签 y ( i ) ( i = 1 , 2 , ⋯ , N ) y^{(i)}(i=1,2,\cdots,N) y(i)(i=1,2,,N)的加权平均数~
f ( x ) = G ( x , D ) ⋅ Y = κ ( x , x ( 1 ) ) ∑ j = 1 N κ ( x , x ( j ) ) ⋅ y ( 1 ) + ⋯ κ ( x , x ( N ) ) ∑ j = 1 N κ ( x , x ( j ) ) ⋅ y ( N ) \begin{aligned} f(x) & = \mathcal G(x,\mathcal D) \cdot \mathcal Y \\ & = \frac{\kappa(x,x^{(1)})}{\sum_{j=1}^N \kappa(x,x^{(j)})} \cdot y^{(1)} + \cdots \frac{\kappa(x,x^{(N)})}{\sum_{j=1}^N \kappa(x,x^{(j)})} \cdot y^{(N)} \end{aligned} f(x)=G(x,D)Y=j=1Nκ(x,x(j))κ(x,x(1))y(1)+j=1Nκ(x,x(j))κ(x,x(N))y(N)

Nadaraya-Watson \text{Nadaraya-Watson} Nadaraya-Watson核回归代码示例

关于径向基核函数与高斯核函数

在上述注意力机制基本介绍一节中,我们模糊了径向基核函数高斯核函数的区别。这里提出一些新的认识。两种核函数的公式表示如下:
{ RBF :  κ ( x , x ( i ) ) = exp ⁡ ( − γ ⋅ ∥ x − x ( i ) ∥ 2 ) Gaussian :  κ ( x , x ( i ) ) = exp ⁡ [ − 1 2 σ 2 ∥ x − x ( i ) ∥ 2 ] \begin{cases} \begin{aligned} & \text{RBF : } \kappa (x,x^{(i)}) = \exp ( - \gamma \cdot \|x - x^{(i)}\|^2) \\ & \text{Gaussian : } \kappa(x,x^{(i)}) = \exp \left[- \frac{1}{2\sigma^2} \|x - x^{(i)}\|^2 \right] \end{aligned} \end{cases} RBF : κ(x,x(i))=exp(γxx(i)2)Gaussian : κ(x,x(i))=exp[2σ21xx(i)2]
相比之下,径向基核函数它的参数 γ ∈ [ 0 , 1 ] \gamma \in [0,1] γ[0,1],相比高斯核函数 σ \sigma σ的范围描述的更加方便

关于高维向量的核函数表示

根据上面公式,高维向量的核函数表示,其核心步骤是范数的表示。可以使用numpy模块中的numpy.linalg.norm()方法进行表示。下面分别通过调用径向基核函数模块sklearn.metrics.pairwise.rbf_kernel以及手写方式进行实现:

import numpy as np
from sklean.metrics.pairwise import rbf_kerneldef RBFKernelFunction(xInput, xSample, gamma):def NormCalculation(xInput, xSample):NormResult = np.linalg.norm(xInput - xSample)return NormResult ** 2return np.exp((-1 * gamma) * NormCalculation(xInput, xSample))a = np.array([1,2,3,4])
b = np.array([5,6,7,4])SklearnOut = rbf_kernel(a.reshape(1,-1),b.reshape(1,-1),gamma=0.5)
ManuOut = RBFKernelFunction(a.reshape(1,-1),b.reshape(1,-1),gamma=0.5)
# [[3.77513454e-11]]
print(SklearnOut)
# 3.775134544279111e-11
print(ManuOut)

关于回归任务的相关示例

完整代码如下:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math
from tqdm import tqdmdef ReadXlsx(Path):Df = pd.read_excel(Path,sheet_name="Sheet1")return Dfdef DealTokenAndLabel(Df):def DivideTokenAndLabel(ListInput):Label = ListInput.pop(3)return ListInput,Labeldef LinearCorrectOperation(Input,mode="Token"):assert mode in ["Token","Label"]if mode == "Token":OriginalToken = Input[3]UpdateToken = OriginalToken / 10.0Input[3] = round(UpdateToken,3)else:UpdateLabel = Input * 10.0Input = round(UpdateLabel,4)return InputDataList = list()LabelList = list()for (Ids,i) in Df.iterrows():Token,Label = DivideTokenAndLabel(list(i))UpdateToken = LinearCorrectOperation(Token)UpdateLabel = LinearCorrectOperation(Label,mode="Label")DataList.append(np.array(UpdateToken))LabelList.append(np.array(UpdateLabel))return DataList,LabelListdef AlgorithmProcess(DataList,LabelList,gamma,mode="RBF"):assert mode in ["Linear","RBF"]def RBFKernelFunction(xInput,xSample,gamma):def NormCalculation(xInput, xSample):NormResult = np.linalg.norm(xInput - xSample)return NormResult ** 2return np.exp((-1 * gamma) * NormCalculation(xInput, xSample))def LinearKernelFunction(xInput,xSample):return np.dot(xInput,xSample)def SoftmaxFunction(xInput,xSample,gamma,mode):if mode == "Linear":return LinearKernelFunction(xInput,xSample) / sum(LinearKernelFunction(xInput,i) for i in DataList)else:return RBFKernelFunction(xInput,xSample,gamma) / sum(RBFKernelFunction(xInput,i,gamma) for i in DataList)def NWKernalRegressionResult(xInput,gamma,mode):KernelRegressionList = list()for _,(TokenSample,LabelSample) in enumerate(zip(DataList,LabelList)):if (TokenSample == xInput).all():continueelse:if mode == "RBF":xInput = xInput.reshape(1, -1)TokenSample = TokenSample.reshape(1, -1)SoftmaxCoeff = SoftmaxFunction(xInput, TokenSample, gamma, mode)KernelRegressionList.append(SoftmaxCoeff * LabelSample)return sum(KernelRegressionList)return [NWKernalRegressionResult(i,gamma,mode) for i in DataList]# return NWKernalRegressionResult(xInput,gamma)def EmpiricRiskStatic(mode):def EmpiricRisk(NWKernelPredictList,LabelList,mode="FirstOrder"):assert mode in ["FirstOrder","SecondOrder"]ErrorList = list()for _,(NWKernelPredict,Label) in enumerate(zip(NWKernelPredictList,LabelList)):if mode == "FirstOrder":ErrorList.append(abs(NWKernelPredict - Label))else:ErrorList.append((NWKernelPredict - Label) ** 2)return sum(ErrorList) / len(ErrorList)GammaLimits = list(np.linspace(0, 0.5, 2000))EmpiricRiskList = list()EmpiricRiskListSecond = list()for GammaChoice in tqdm(GammaLimits):NWKernelPredictList = AlgorithmProcess(DataList,LabelList,GammaChoice,mode=mode)EmpiricRiskResult = EmpiricRisk(NWKernelPredictList, LabelList)EmpiricRiskList.append(EmpiricRiskResult)EmpiricRiskResultSecond = EmpiricRisk(NWKernelPredictList,LabelList,mode="SecondOrder")EmpiricRiskListSecond.append(EmpiricRiskResultSecond)plt.scatter(GammaLimits,EmpiricRiskList,s=2,c="tab:blue")plt.scatter(GammaLimits,EmpiricRiskListSecond,s=2,c="tab:orange")plt.savefig("EmpiricRisk.png")plt.show()if __name__ == '__main__':Path = r""DataList, LabelList = DealTokenAndLabel(ReadXlsx(Path))EmpiricRiskStatic(mode="RBF")

关于使用 Nadaraya-Watson \text{Nadaraya-Watson} Nadaraya-Watson核回归时,需要注意的点:

  • 由于 Nadaraya-Watson \text{Nadaraya-Watson} Nadaraya-Watson核回归自身是懒惰学习方法,因此,这里唯一的参数就是径向基核函数中描述的 γ \gamma γ。而针对选择最优 γ \gamma γ,这里使用的目标函数经验风险 ( Empiric Risk ) (\text{Empiric Risk}) (Empiric Risk)
    J ( γ ) = E P ^ d a t a { L [ f ( x ( i ) ; γ ) , y ( i ) ] } = 1 M ∑ i = 1 M L [ f ( x ( i ) ; γ ) , y ( i ) ] \mathcal J(\gamma) =\mathbb E_{\hat {\mathcal P}_{data}} \left\{\mathcal L[f(x^{(i)};\gamma),y^{(i)}]\right\} = \frac{1}{\mathcal M} \sum_{i=1}^{\mathcal M} \mathcal L[f(x^{(i)};\gamma),y^{(i)}] J(γ)=EP^data{L[f(x(i);γ),y(i)]}=M1i=1ML[f(x(i);γ),y(i)]
    其中 L [ f ( x ( i ) ; γ ) ] \mathcal L[f(x^{(i)};\gamma)] L[f(x(i);γ)]表示关于 x ( i ) x^{(i)} x(i)预测结果 f ( x ( i ) ) f(x^{(i)}) f(x(i))真实标签 y ( i ) y^{(i)} y(i)之间的差异性结果,也就是损失函数 L ( ⋅ ) \mathcal L(\cdot) L() x ( i ) x^{(i)} x(i)点处的结果。目标函数确定后,这里的处理方式是:

    • γ \gamma γ确定的情况下,将数据集 P ^ d a t a \hat {\mathcal P}_{data} P^data中的每一个样本抽取出来,并使用剩余样本进行预测;
      值得注意的是:在抽取操作结束后,使用剩余样本做预测。因为如果被抽取样本依然保留在数据集内,那么在计算权重系数 κ ( x , x ( i ) ) ∑ j = 1 N κ ( x , x ( j ) ) \begin{aligned}\frac{\kappa(x,x^{(i)})}{\sum_{j=1}^N \kappa (x,x^{(j)})}\end{aligned} j=1Nκ(x,x(j))κ(x,x(i))过程中,数据集内与被抽取样本相同的样本其权重必然占据极高比重,因为该项的分子必然是 1 ( e 0 ) 1(e^0) 1(e0),从而该样本的预测结果会被数据集内相同的样本进行主导或者控制。个人实践踩过的坑~
    • 在所有样本均被遍历一次后,计算 J ( γ ) \mathcal J(\gamma) J(γ),记录并修改 γ \gamma γ,执行下一次迭代。从而通过统计的方式得到 γ ∈ [ 0 , 1 ] \gamma \in [0,1] γ[0,1]中的最优解
  • 关于损失函数 L [ f ( x ( i ) ; γ ) , y ( i ) ] \mathcal L[f(x^{(i)};\gamma),y^{(i)}] L[f(x(i);γ),y(i)],可以使用曼哈顿距离( 1 1 1阶)或者欧几里得距离( 2 2 2阶)对标签之间的差异性进行描述:
    无论 f ( x ( i ) ; γ ) f(x^{(i)};\gamma) f(x(i);γ)还是 y ( i ) y^{(i)} y(i)都是标量形式。因而没有使用范数进行表达。
    L [ f ( x ( i ) ; γ ) , y ( i ) ] = { ∣ f ( x ( i ) ; γ ) − y ( i ) ∣ ⇒ Manhattan Distance [ f ( x ( i ) ; γ ) − y ( i ) ] 2 ⇒ Euclidean Distance \mathcal L[f(x^{(i)};\gamma),y^{(i)}] = \begin{cases} \left|f(x^{(i)};\gamma) - y^{(i)} \right| \quad \Rightarrow \text{Manhattan Distance}\\ \quad \\ \left[f(x^{(i)};\gamma) - y^{(i)} \right]^2 \quad \Rightarrow \text{Euclidean Distance} \end{cases} L[f(x(i);γ),y(i)]= f(x(i);γ)y(i) Manhattan Distance[f(x(i);γ)y(i)]2Euclidean Distance

这里基于某数据集的回归任务,关于曼哈顿距离、欧式距离作为损失函数, J ( γ ) \mathcal J(\gamma) J(γ) γ \gamma γ之间的关联关系表示如下:
其中横坐标表示 γ \gamma γ的取值;纵坐标表示 J ( γ ) \mathcal J(\gamma) J(γ)的映射结果。
某回归任务的经验风险结果
其中蓝色点形状表示曼哈顿距离作为损失函数的图像结果;而橙色点形状表示欧几里得距离作为损失函数的图像结果。从图中可以看出:在相似位置可以得到目标函数的最小值
需要注意的是,两种函数无法相互比较,因为两者对应目标函数的值域不同。

个人想法

虽然通过统计的方式得到了 γ \gamma γ的最优解,但它可能并不准。或者说:基于当前数据集 P ^ d a t a \hat {\mathcal P}_{data} P^data,使用径向基核函数条件下的最准结果。其他优化的方式有:

  • 核函数的选择;
    一般情况下,线性核函数本身是够用的。
  • 扩充样本数据;
    • 在最早的概率与概率模型中介绍过,模型预测的不准的本质原因是预测模型与真实模型之间的差异性较大。而在 Nadaraya-Watson \text{Nadaraya-Watson} Nadaraya-Watson核回归中,并没有涉及到具体模型。因而反馈的结果是:当前训练集所描述的概率分布真实分布之间存在较大差距
    • 由于真实分布是客观存在的,也就是说训练集的样本越多,分布就越稳定。体现在参数 γ \gamma γ中的效果是:在样本数量较少时,不同的数据集对应的 γ \gamma γ差异性可能很大(波动较大);随着样本数量的增多, γ \gamma γ会逐渐趋于稳定

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/111437.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python matlab 画柱状图

函数: bar(x, height, width0.8, bottomNone, *, aligncenter,dataNone, **kwargs) 设置坐标的刻度(ticks),轴的标签和标题 在数据分析的很多时候,我们各个柱下面通常不是x刻度值,而是有实际意义的字符串,那么这个时…

TensorFlow-slim包进行图像数据集分类---具体流程

TensorFlow中slim包的具体用法 1、训练脚本文件(该文件包含数据下载打包、模型训练,模型评估流程)3、模型训练1、数据集相关模块:2、设置网络模型模块3、数据预处理模块4、定义损失loss5、定义优化器模块 本次使用的TensorFlow版本…

延迟队列的理解与使用

目录 一、场景引入 二、延迟队列的三种场景 1、TTL对队列进行延迟 2、创建通用延时消息对消息延迟 3、使用rabbitmq的延时队列插件 x-delayed-message使用 父pom文件 pom文件 配置文件 config 生产者 消费者 结果 一、场景引入 我们知道可以通过TTL来对队列进行设…

Matlab(结构化程式和自定义函数)

目录 1.脚本编辑器 2.脚本流 2.1 控制流 2.2 关系(逻辑)操作符 3.脚本与函数 1.脚本编辑器 Matlab的命名规则: 常用功能: 智能缩进: 在写代码的时候,有的时候代码看起来并不是那么美观(可读性…

栈和队列(详解)

一、栈 1.1、栈的基本概念 1.1.1、栈的定义 栈(Stack):是只允许在一端进行插入或删除的线性表。首先栈是一种线性表,但限定这种线性表只能在某一端进行插入和删除操作。 栈顶(Top):线性表允许…

iPhone 15 Pro与谷歌Pixel 7 Pro:哪款相机手机更好?

考虑到苹果最近将更多高级功能转移到iPhone Pro设备上的趋势,今年秋天iPhone 15 Pro与谷歌Pixel 7 Pro的对决将是一场特别有趣的对决。去年发布的iPhone 14 Pro确实发生了这种情况,有传言称iPhone 15 Pro再次受到了苹果的大部分关注。 预计iPhone 15系列会有一些变化,例如切…

企业网络安全:威胁情报解决方案

什么是威胁情报 威胁情报是网络安全的关键组成部分,可为潜在的恶意来源提供有价值的见解,这些知识可帮助组织主动识别和防止网络攻击,通过利用 STIX/TAXII 等威胁源,组织可以检测其网络中的潜在攻击,从而促进快速检测…

Flutter Web 项目网络请求报 XMLHttpRequest error 解决方案

使用http库进行简单的网络请求时,运行在Chrome浏览器上,网络请求一直报错 XMLHttpRequest error,而在iOS 模拟器上运行则正常,后面在postman上发送请求,也是正常的。这就是很尴尬了!!&#xff0…

公有云与私有云,IaaS、PaaS 和 SaaS云服务模型概述

云计算主要分为 4 种类型:私有云、公共云、混合云和多云。同时,云计算服务主要有 3 种:基础架构即服务(IaaS)、平台即服务(PaaS)和软件即服务(SaaS) Saas(Sof…

nginx-concat

为了减少tcp请求数量,nginx从上有服务器获取多个静态资源(css,js)的时候,将多个静态资源合并成一个返回给客户端。 这种前面有两个问号的请求都是用了cancat合并功能。 先到官网下载安装包,拷贝到服务器编译…

UDP 多播(组播)

前言(了解分类的IP地址) 1.组播(多播) 单播地址标识单个IP接口,广播地址标识某个子网的所有IP接口,多播地址标识一组IP接口。单播和广播是寻址方案的两个极端(要么单个要么全部)&am…

微信小程序 实时日志

目录 实时日志 背景 如何使用 如何查看日志 注意事项 实时日志 背景 为帮助小程序开发者快捷地排查小程序漏洞、定位问题,我们推出了实时日志功能。从基础库2.7.1开始,开发者可通过提供的接口打印日志,日志汇聚并实时上报到小程序后台…

【base64】JavaScriptuniapp 将图片转为base64并展示

Base64是一种用于编码二进制数据的方法&#xff0c;它将二进制数据转换为文本字符串。它的主要目的是在网络传输或存储过程中&#xff0c;通过将二进制数据转换为可打印字符的形式进行传输 JavaScript 压缩图片 <html><body><script src"https://code.j…

数学建模:主成分分析法

&#x1f506; 文章首发于我的个人博客&#xff1a;欢迎大佬们来逛逛 主成分分析法 算法流程 构建原始数据矩阵 X X X &#xff0c;其中矩阵的形状为 x ∗ n x * n x∗n &#xff0c;有 m m m 个对象&#xff0c; n n n 个评价指标。然后进行矩阵的归一化处理。首先计算矩…

Android Looper Handler 机制浅析

最近想写个播放器demo&#xff0c;里面要用到 Looper Handler&#xff0c;看了很多资料都没能理解透彻&#xff0c;于是决定自己看看相关的源码&#xff0c;并在此记录心得体会&#xff0c;希望能够帮助到有需要的人。 本文会以 猜想 log验证 的方式来学习 Android Looper Ha…

第62步 深度学习图像识别:多分类建模(Pytorch)

基于WIN10的64位系统演示 一、写在前面 上期我们基于TensorFlow环境做了图像识别的多分类任务建模。 本期以健康组、肺结核组、COVID-19组、细菌性&#xff08;病毒性&#xff09;肺炎组为数据集&#xff0c;基于Pytorch环境&#xff0c;构建SqueezeNet多分类模型&#xff0…

Android Activity启动过程一:从Intent到Activity创建

关于作者&#xff1a;CSDN内容合伙人、技术专家&#xff0c; 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 &#xff0c;擅长java后端、移动开发、人工智能等&#xff0c;希望大家多多支持。 目录 一、概览二、应用内启动源码流程 (startActivity)2.1 startActivit…

ADRV9009子卡 设计原理图:FMCJ450-基于ADRV9009的双收双发射频FMC子卡 便携测试设备

FMCJ450-基于ADRV9009的双收双发射频FMC子卡 一、板卡概述 ADRV9009是一款高集成度射频(RF)、捷变收发器&#xff0c;提供双通道发射器和接收器、集成式频率合成器以及数字信号处理功能。北京太速科技&#xff0c;这款IC具备多样化的高性能和低功耗组合&#xff0c;FMC子…

基于亚马逊云科技无服务器服务快速搭建电商平台——部署篇

受疫情影响消费者习惯发生改变&#xff0c;刺激了全球电商行业的快速发展。除了依托第三方电商平台将产品销售给消费者之外&#xff0c;企业通过品牌官网或者自有电商平台销售商品也是近几年电商领域快速发展的商业模式。独立站电商模式可以进行多方面、全渠道的互联网市场拓展…

Git分布式版本控制系统与github

第四阶段提升 时 间&#xff1a;2023年8月29日 参加人&#xff1a;全班人员 内 容&#xff1a; Git分布式版本控制系统与github 目录 一、案例概述 二、版本控制系统 &#xff08;一&#xff09; 本地版本控制 &#xff08;二&#xff09;集中化的版本控制系统 &…