DETR-《End-to-End Object Detection with Transformers》论文精读笔记

DETR(基于Transformer架构的目标检测方法开山之作)

End-to-End Object Detection with Transformers
参考:跟着李沐学AI-DETR 论文精读【论文精读】

摘要

在摘要部分作者,主要说明了如下几点:

  1. DETR是一个端到端(end-to-end)框架,释放了传统基于CNN框架的一阶段(YOLO等)、二阶段(FasterRCNN等)目标检测器中需要大量的人工参与的步骤,例如:NMS后处理或proposals/anchors/centers生成等。使其成为一个真正意义上的端到端(end-to-end)的目标检测框架;
  2. DETR还可以很方便地迁移到诸如全景分割等其他任务当中,只需要在最后的FFN(前向传播头)之后增加分割头等即可;
  3. DETR在当时发表出来的时候(2020年5月左右)已经达到了和经过长时间调参的FasterRCNN基线一样的精度/速度/内存占用(基准为COCO2017);

介绍

DETR模型架构

在这里插入图片描述

第一步,将图片输入到一个CNN中,得到feature map。

第二步,将图片拉直,送入到transformer encoder-decoder。其中,encoder的作用是为了进一步学习全局的信息,为最后的decoder(也就是为最后的出预测框做铺垫)。使用transformer的encoder是为使得图片中每一个特征点与图片中的其他特征有交互,这样就知道了哪块是哪个物体。这种全局的特征非常有利于移除冗余的框(全局建模)。

第三步,decoder生成框的输出,其中输入decoder的不只有encoder的输出,还有object query(用来限制decoder输出多少个框),通过object query和特征不停的做交互(在decoder中间去做self-attention操作),从而得到最后输出的框(论文中,作者选择的框数量为N=100)。

第四步,计算出来的N=100个框与Ground Truth做匹配然后计算loss(本部分是DETR这篇文章中最重要的一个贡献)。作者使用二分图匹配的方法去计算loss,从而决定出在预测出来的100个框中,有哪几个框是与ground-truth框对应的。匹配之后,就会和普通的目标检测一样去计算分类的loss、再算bounding box的loss。剩下的没有匹配上的框就会被标记为没有物体,也就是所谓的背景类。

DETR推理流程

推理的时候前三步和训练时保持一样,第四步因为是test过程,因此只需要在最后的输出上设置一下置信度阈值即可得到预测框,(原始论文中,将置信度设置为0.7,即置信度大于0.7的预测就是前景物体,所有置信度小于0.7的就被当做背景)。

DETR特性

对大物体识别效果很好(归功于Transformer架构的全局建模能力,而不是像原来一样,预测的物体大小受限制于你设置的anchor大小),对小物体识别效果较差(后续的Deformable DETR就提出了多尺度的DETR,同时解决了DETR训练太慢的问题);

相关工作

  1. 集合预测(因为使用集合预测来解决目标检测问题的工作其实并不多);
  2. Transformer架构(同时也介绍了parallel decoding,如何不像原来的transformer一样去做自回归预测);
  3. 介绍了一下目标检测之前的相关工作,其中重点引用了一篇当时最近的工作,指出原来的一阶段或二阶段的目标检测器的性能与初始的猜测(proposals/anchors/centers等)密切相关,这里作者重点想讲的就是不想使用这些复杂的人工先验知识,因此DETR在这个方面具有优势;
  4. 然后作者介绍了基于RNN的目标检测方法,使用的是自回归模型,时效性就比较差,性能也会比较差;DETR使用了不带掩码信息的decoder之后,可以使得预测输出同时进行,所以DETR的时效性大大增强了;

文章主体部分

作者首先介绍了基于二分图匹配的loss目标函数(因为这点比DETR这种架构来说更新,同时DETR架构是比较标准的,比较容易理解的,即便是其中的object query思想,也比较容易讲解,因此作者首先介绍了目标函数),也正是因为这种目标函数,DETR才能做到一对一的预测出框方式。

二分图匹配
举例理解:假如说有三个工人abc,然后需要完成三个工作xyz,因为所有工人的特点不一样,因此三个工人完成工作的时间等都不一致,因此对三个工人和三个不同的工作来说,会有一个 3 × 3 3\times3 3×3的矩阵,矩阵中对应的每个格子具有不同的数值(这个矩阵就叫做cost matrix,也就是损失矩阵);那么,这个二分图匹配的最终目的是:我可以给每个工人找到最擅长的工作,然后使得这三个人完成工作之后的代价最低;

匈牙利算法就是解决这样一个问题的比较好的方式。

scripy库中,包含匈牙利算法的实现:line_sum_assignment。DETR原始论文中使用的也是这个;
这个方法返回的结果就是一个全面的排列:告诉你哪个人应该做哪个事;

其实,DETR将目标检测问题看成是集合预测问题,其中每个工人可以看成是对应的N=100的预测框,然后xyz表示GroundTruth框;
那么,这个cost matrix矩阵的每个格子中放的就是每个预测框与GroundTruth框之间的cost(也就是loss);

这里的每个格子中表示的loss,就是分类损失和bbox loss,总的来说就是遍历所有预测的框,将这些框与GroundTruth进行计算loss,然后使用匈牙利算法得到最匹配的对应的图片中目标数量的框;

然后,作者又说,这里与一阶段/二阶段的目标检测器一样的道理,都是拿着预测出来的框与GroundTruth逐个计算loss。但是,唯一不同的地方在于DETR是只得到一对一的匹配关系,而不像之前方法一样得到一对多的匹配关系,这样DETR就不需要做后边的NMS后处理步骤。

loss目标函数
接下来,由于前边步骤得到了所有匹配的框,那么现在才计算真正的loss来做梯度回传。DETR在计算真正的loss(分类loss和bbox loss),其中对于分类loss,作者和原来的计算分类loss方法不一样,而是将DETR中这个地方的log去掉(作者发现去掉之后效果会更好一些)。然后对于bbox loss这里,与之前的loss计算方式也有所不同,原来计算bbox loss是使用L1 loss,但是l1 loss会出现框越大,计算出来的loss容易越大。而同时DETR这种基于Transformer架构的模型,对大目标(预测出大框很友好),那么得到的loss就会比较大,不利于优化。因此,作者不光使用了l1 loss,还使用了GIoU loss。这里的GIoU loss就是一个与框大小无关的loss函数。

DETR详细架构

在这里插入图片描述

上图中,CONV卷积神经网络的输出向量维度为:2048x25x34,然后使用1x1的卷积将该向量维度减少到256,得到256x25x34的向量,然后使用positional embeddings进行位置编码得到的向量维度也是256x25x34,然后将两个向量相加。

相加之后,将对应的256x25x34这个向量的HW维度进行拉直得到850x256的向量,其中850就是序列的长度,256就是Transformer的head dimension。然后,经过encoder仍然得到850x256的向量。DETR中作者使用了6个encoder。

然后,将最后一个encoder的输出向量(维度为:850x256),输入到decoder中。这里,一同输入的还有object queries(可以看作是learned embeddings,可学习的嵌入),准确地说,它就是一个可学习的positional embeddings。其维度为100x256。这里可以将这个object queries作为一个条件condition,就是告诉模型,我给你一个条件,你需要得到什么结果。接着,将两个输入(一个来自encoder编码器的输出,一个来自object queries)反复做cross attention自注意力操作。最后得到一个100x256的特征。

然后,将最后一个decoder的输出100x256维度的向量通过一个FFN(feed forward network,标准检测头,全连接层)。然后FFN做出来两个预测,一个是类别,一个是bbox位置。原始的DETR是在COCO2017上进行实验的,因此,这里的类别数量就是91类。

最后,将FFN的输出与Ground Truth根据匈牙利算法计算最佳匹配,然后根据最佳匹配计算loss,然后将loss反向传播,更新模型权重。

DETR中的一些细节

  1. decoder部分,首先在object query做自注意力操作,目的是为了移除冗余的框。因为这些object query做自注意力操作之后,就大概之后每个query可能得到什么样的一个框。

  2. 最后做loss的时候,作者为了让这个模型收敛得更快或训练更稳定。作者在decoder之后加了auxiliary loss。作者在6个decoder的输出之后都做了这个loss。这里的FFN都是共享权重。

文章实验部分

在这里插入图片描述

首先,作者介绍了DETR和FasterRCNN在COCO数据集上的结果。发现DETR在大物体上检测的性能更好,而小物体上还是FasterRCNN模型更好一些。这说明DETR使用了Transformer架构,具有较高的全局建模能力,因此DETR想检测多大的目标就检测多大的目标,所以对大目标友好一些。

(延伸)写论文的技巧:当你的想法在一个数据集a上不work的时候,有可能在数据集b上work,如果你的想法很好,但是就是不work的时候,找到一个合适的研究动机其实也是很重要的,找到一个合适的切入点也很重要。

在这里插入图片描述

上图中,作者将Transformer encoder-decoder的自注意力机制可视化。可以看到自注意力机制的巨大威力,三只牛基本上的轮廓基本上都出来了。
实际上,当你使用transformer的encoder之后,图像上的东西就可以分的很开了,那么这个时候再去做检测、分割等任务就很简单了。

在这里插入图片描述

上图展示了不同的encoder数量对DETR最后目标检测精度AP的影响。可以发现,随着encoder层数的增加,AP精度是一直在上升的,且没有饱和的趋势,但是层数的增加带来了计算量的增加。

在这里插入图片描述

上图中展示了DETR中decoder attention的分布情况,可以明显看到在遮挡很严重的情况下,大象和小象身上的不同颜色注意力也是很区分开来的。总之,DETR这里的encoder-decoder架构的作用与CNN的encoder-decoder架构的作用其实差不多是一致的。

在这里插入图片描述

上图展示了20个object query的可视化结果,其中每个正方形代表一个object query,每个object query中出现的多个点表示bounding box。其中,绿色的点表示目标物体,红色点表示水平方向的目标物体,蓝色点表示垂直方向的目标物体。实际上,这里的object query和一阶段目标检测器中的anchors差不多,只不过anchors是预先设定的,而这里的object query是通过学习得到的。总之,这100个query中就像100个问问题的人一样,每个人都会有不同的问问题的方式。需要注意的是,这些object query中都在中间有一个红线,这表示,每个query都会去询问图片中间是否包含大的目标物体,这是因为COCO数据集的问题,因为COCO数据集中很多图片中心都会有一些大物体。

总结

一些基于DETR改进的新工作:
Omni DETR, Up DETR, PnP DETR, Smac DETR, Deformable DETR, DAB DETR, Sam DETR, DN DETR, OW DETR, OV DETR,

pixel to sequence(把输入输出全部搞成序列形式,从而与NLP那边完美兼容)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/112324.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

本地部署 CodeLlama 并在 VSCode 中使用 CodeLlama

本地部署 CodeLlama 并在 VSCode 中使用 CodeLlama 1. CodeLlama 是什么2. CodeLlama Github 地址3. 下载 CodeLlama 模型4. 部署 CodeLlama5. 在 VSCode 中使用 CodeLlama6. 使用WSGI启动服务7. 创建 start.sh 启动脚本 1. CodeLlama 是什么 Code Llama 是一个基于 Llama 2 的…

Flink_state 的优化与 remote_state 的探索

摘要:本文整理自 bilibili 资深开发工程师张杨,在 Flink Forward Asia 2022 核心技术专场的分享。本篇内容主要分为四个部分: 相关背景state 压缩优化Remote state 探索未来规划 点击查看原文视频 & 演讲PPT 一、相关背景 1.1 业务概况 从…

context.WithCancel()的使用

“ WithCancel可以将一个Context包装为cancelCtx,并提供一个取消函数,调用这个取消函数,可以Cancel对应的Context Go语言context包-cancelCtx[1] 疑问 context.WithCancel()取消机制的理解[2] 父母5s钟后出门,倒计时,父母在时要学习,父母一走…

110. 平衡二叉树

原题链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 题目描述 给定一个二叉树,判断它是否是高度平衡的二叉树。 本题中,一棵高度平衡二叉树定义为: 一个二叉树每个节点 的左右两个子树的高度差的绝…

软件设计师学习笔记7-输入输出技术+总线+可靠性+性能指标

目录 1.输入输出技术 1.1数据传输控制方式 1.2中断处理过程 2.总线 3.可靠性 3.1可靠性指标 3.2串联系统与并联系统 3.3混合模型 4.性能指标 1.输入输出技术 即CPU控制主存与外设交互的过程 1.1数据传输控制方式 (1)程序控制(查询)方式&…

qt第一天

#include "widget.h" #include "ui_widget.h" #include "QDebug" Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);this->resize(QSize(800,600)); //使用匿名对象,调用重…

C++设计模式_01_设计模式简介(多态带来的便利;软件设计的目标:复用)

文章目录 本栏简介1. 什么是设计模式2. GOF 设计模式3. 从面向对象谈起4. 深入理解面向对象5. 软件设计固有的复杂性5.1 软件设计复杂性的根本原因5.2 如何解决复杂性 ? 6. 结构化 VS. 面向对象6.1 同一需求的分解写法6.1.1 Shape1.h6.1.2 MainForm1.cpp 6.2 同一需求的抽象的…

SQL 大小敏感问题

在SQL中,关键字和函数名 是不区分 大小写的 比如(select、where、order by 、group by update 等关键字),以及函数(ABS、MOD、round、min等) window系统默认是大小写不敏感 (ZEN文件和zen 文件 不能同时存在&#xff…

《悉达多》读书笔记——觉悟到的真理到底是什么?

目录 一、作者简介 二、创造背景 三、内容简介 第一阶段 第二阶段 第三阶段 第四阶段 第五阶段 四、经典摘录 五、个人思考 一、作者简介 赫尔曼黑塞(Hermann Hesse,1877年7月2日~1962年8月9日),德国作家&…

Next.js基础语法

Next.js 目录结构 入口App组件(_app.tsx) _app.tsx是项目的入口组件,主要作用: 可以扩展自定义的布局(Layout)引入全局的样式文件引入Redux状态管理引入主题组件等等全局监听客户端路由的切换 ts.config…

在CSDN的第128天:写博客是我对抗焦虑的工具

目录 机缘 收获 日常 成就 憧憬 致各位 机缘 机缘,我在CSDN应该有两个比较大的机缘 第一个机缘是在大一上的时候,加入了实验室的朋友们都在写博客,而我因为没加入实验室,一度非常焦虑。当时我很害怕,我害怕我自己…

软件测试人员在工作中如何运用Linux

从事过软件测试的小伙们就会明白会使用Linux是多么重要的一件事,工作时需要用到,面试时会被问到,简历中需要写到。 对于软件测试人员来说,不需要你多么熟练使用Linux所有命令,也不需要你对Linux系统完全了解&#xff…

计算机网络(速率、宽带、吞吐量、时延、发送时延)

速率: 最重要的一个性能指标。 指的是数据的传送速率,也称为数据率 (data rate) 或比特率 (bit rate)。 单位:bit/s,或 kbit/s、Mbit/s、 Gbit/s 等。 例如 4 1010 bit/s 的数据率就记为 40 Gbit/s。 速率往往是指额定速率或…

cyclictest stress 工具 使用

工具介绍 1. Cyclictest 准确且重复地测量线程的预期唤醒时间与它实际唤醒的时间之间的差异,以提供有关系统延迟的统计数据。 它可以测量由硬件、固件和操作系统引起的实时系统延迟 2.stress是Linux的一个压力测试工具,可以对CPU、Memory、IO、磁盘进行…

Oracle的学习心得和知识总结(二十九)|Oracle数据库数据库回放功能之论文三翻译及学习

目录结构 注:提前言明 本文借鉴了以下博主、书籍或网站的内容,其列表如下: 1、参考书籍:《Oracle Database SQL Language Reference》 2、参考书籍:《PostgreSQL中文手册》 3、EDB Postgres Advanced Server User Gui…

ssm+vue理发店会员管理系统源码和论文

ssmvue理发店会员管理系统源码和论文089 开发工具:idea 数据库mysql5.7 数据库链接工具:navcat,小海豚等 技术:ssm 摘 要 网络技术和计算机技术发展至今,已经拥有了深厚的理论基础,并在现实中进行了充分运用&a…

mac苹果电脑怎么运行Windows软件?怎么安装Win虚拟机?

近年来,苹果电脑的用户群体不断扩大,许多用户对于苹果电脑是否可以运行Windows软件产生了疑问。苹果电脑和Windows操作系统有着明显的区别,是否能够在苹果电脑上运行Windows软件。下面我们就来看苹果电脑可以运行Windows软件吗,苹…

Go Map

学习了GO语言中数组,切片类型,但是我们发现使用数组或者是切片存储的数据量如果比较大,那么通过下标来取出某个具体的数据的时候相对来说,比较麻烦。例如: names : []string{"张三","李四","…

【小吉测评】哔哩哔哩接入AI?!效果如何?

文章目录 🎄前言⭐申请方式🏳️‍🌈注意 🛸简介🍔上手体验🛸进行数学计算🥰可以写代码吗 🎄前言 最近人工智能特别火,chatgpt,Claude2,文心一言等…

透明直接光和间接光生成

直接光: Scene:Lights:DirectLighting:InjectTranslucencyVolume TranslucentLightInjectionShaders.usf void InjectMainPS(FWriteToSliceGeometryOutput Input,out float4 OutColor0 : SV_Target0,out float4 OutColor1 : SV…