最新类ChatPDF及AutoGPT开源18大功能平台——闻达手把手超详细环境部署与安装——如何在低显存单显卡上面安装私有ChatGPT GPT-4大语言模型LLM调用平台

目录

  • 前言
  • 闻达框架简介
    • 前期准备
      • 电脑要求
      • 安装anaconda
      • 安装相应版本的CUDA
      • 配置ChatGLM-6B Conda环境
      • 安装pytorch
  • 类ChatPDF及AutoGPT开源模型——闻达环境部署及安装
    • 相关代码及模型下载
    • 解压模型到指定地址
    • 配置文件修改
    • 根据使用的不同模型,安装相关库
    • 运行体验
      • 运行chatGLM-6B 大语言模型
      • 运行chatRWKV 大语言模型
      • 运行llama 大语言模型
      • 类AutoGPT功能
      • 类ChatPDF功能
  • 参考资料
  • 其它资料下载

前言

今天,我试用了闻达开源LLM调用平台。这一框架拥有类AutoGPT和ChatPDF的功能,能根据一句简短的提示自动生成提纲,然后按照提纲自动填充每章内容,使得论文或小说的写作变得更加高效。此外,它能够导入相关知识库,并通过调用知识库查询相关信息,这项技术更加令人叹服。除此之外,该平台还可基于问题生成相关关键词,并在与知识库交互后对每个关键词自动获取多个答案。这一连串自动化和高度的效率操作,令我深感平台的卓越魅力,无法抵挡其吸引力。

在这里插入图片描述
在这里插入图片描述

喜欢的小伙伴们千万不要错过,当然也欢迎更多小伙伴加入,进行二次开发。

闻达框架简介

闻达是一个综合的开源LLM调用平台。旨在通过使用为小模型外挂知识库查找的方式,实现近似于大模型的生成能力。

目前支持模型:chatGLM-6B、chatRWKV、chatYuan、llama系列。

  • 知识库扩展模型能力
  • 支持参数在线调整
  • 支持chatGLM-6B、chatRWKV、llama系列流式输出和输出过程中中断
  • 自动保存对话历史至浏览器(多用户同时使用不会冲突,chatRWKV历史消息实现方式需使用string)
  • 对话历史管理(删除单条、清空)
  • 支持局域网、内网部署和多用户同时使用。
  • 多用户同时使用中会自动排队,并显示当前用户。

前期准备

电脑要求

  • python版本要求:3.8
  • windows系统:Windows 7 or later (with C++ redistributable)
  • 显卡:6G以上GPU

安装anaconda

从anaconda官网,下载安装anaconda。具体教程详见官网教程。
在这里插入图片描述

安装相应版本的CUDA

首先在终端查看你的Nividian版本,命令如下:

nvidia-smi

在这里插入图片描述
查看到本机可装CUDA版本最高为12.0,版本向下兼容,意思就是CUDA 12.0及以下版本的都可以安装,但一般不建议使用最新版本的。因为可能后续其他安装包没有更新对应版本的可以下载。由于Pytorch(可以从pytorch官网)中可以看到,目前的CUDA版本一般是11.7和11.8,所以建议选择11.8版本以下的。博主这里选择了11.7进行安装。
在这里插入图片描述

安装完后,注意需要看下系统环境变量中地址有没有相应版本的cuda,比如我的电脑就是配置了下面几个环境变量
在这里插入图片描述
除上面两个之外 ,还可以加入以下环境变量,以保证不会出错。我没配置下面两个,也没出错,所以大家根据实际情况选择是否加入下面两个环境配置。

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\extras\CUPTI\lib64
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\include

不配置可能会报错,Could not load dynamic library ‘cudart64_110.dll’; dlerror: cudart64_110.dll not found

配置ChatGLM-6B Conda环境

首先以管理员方式启动windows命令窗口,在搜索中输入cmd即可打开,输入以下命令,新建一个名字为ChatGLM的环境,并安装tensorflow-gpu版本。新建环境过程中选择y,进入下一步

conda create --name ChatGLM python==3.8.10

接下来激活ChatGLM的环境

conda activate ChatGLM

安装pytorch

如果电脑配置了GPU,要注意需安装GPU版本的pytorch,具体可登录官网链接:

这里要注意选择你是什么系统,cuda是安装了什么版本(博主前面选择的是11.7),然后复制下面红框中的命令到终端就可以安装了。

在这里插入图片描述
在终端运行下面命令,即可安装成功pytorch-GPU版本:

conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia

在终端输入python,然后依次输入下面代码,验证torch-GPU版本是不是成功。

import torch
torch.cuda.is_available()  ## 输出应该是True

在这里插入图片描述

类ChatPDF及AutoGPT开源模型——闻达环境部署及安装

相关代码及模型下载

下载地址:https://pan.baidu.com/s/105nOsldGt5mEPoT2np1ZoA?pwd=lyqz 提取码:lyqz

在这里插入图片描述
这里只要下载最新的4.22和模型文件夹这两个文件夹即可。

下载下来后,把4.22中的压缩文件解压,说明如下:

在这里插入图片描述

解压模型到指定地址

其中chatglm和text2vec必下文件夹中都是模型文件,依次解压到wenda主文件夹中的model里面。

其中chatglm-6b-int4是低显存版的模型,也是压缩文件chatglm-6b-int4.7z解压出来的模型,如果想要运行最新版本的Chatglm-6b模型,可以参考下面步骤再下载到model/chatglm-6b文件夹中

从hugging face下载所有文件下来,放到model/chatglm-6b文件夹内。

其中模型文件(大于 1G 的)如果下载速度慢,可以在国内清华云源中单独下载这几个模型文件(其他这个源没有的文件还是需要在 huggingface 上下载):https://cloud.tsinghua.edu.cn/d/fb9f16d6dc8f482596c2/

最后model/chatglm-6b文件夹内应该如下显示:

在这里插入图片描述

最终model文件夹内应该至少有以下红框标注文件夹或模型,当然闻达框架还可以兼容其它模型,大家也可以根据需求,后期加载各种模型,同时进行相关配置
在这里插入图片描述

配置文件修改

主要配置文件为wenda文件夹中的config.xml文件
在这里插入图片描述
注意对相关模型地址的修改,但如果模型没有按上面解压出来的话,就不需要做其它处理了。如果要使用最新版本的Chatglm-6b模型作为glm模型话,就需要修改<value>model/chatglm-6b-int4</value><value>model/chatglm-6b</value>即可

<?xml version="1.0" encoding="UTF-8"?>
<configuration><General><property><name>Logging</name><value>True</value><description>日志</description></property><property><name>Port</name><value>17860</value><description>WebUI 默认启动端口号</description></property><property><name>LLM_Type</name><value>rwkv</value><description>LLM模型类型:glm6b、rwkv、llama</description></property></General><Models><RWKV><property><name>Path</name><value>model/RWKV-4-Raven-7B-v9x-i8.pth</value><description>rwkv模型位置</description></property><property><name>Strategy</name><value>cuda fp16</value><description>rwkv模型参数</description></property><property><name>HistoryMode</name><value>string</value><description>rwkv历史记录实现方式:state、string</description></property></RWKV><GLM6B><property><name>Path</name><value>model/chatglm-6b</value><description>glm模型位置</description></property><property><name>Strategy</name><value>cuda fp16</value><description>glm 模型参数  支持:"cuda fp16"  所有glm模型 要直接跑在gpu上都可以使用这个参数"cuda fp16i8"  fp16原生模型 要自行量化为int8跑在gpu上可以使用这个参数"cuda fp16i4"  fp16原生模型 要自行量化为int4跑在gpu上可以使用这个参数"cpu fp32"  所有glm模型 要直接跑在cpu上都可以使用这个参数"cpu fp16i8" fp16原生模型 要自行量化为int8跑在cpu上可以使用这个参数"cpu fp16i4" fp16原生模型要 自行量化为int4跑在cpu上可以使用这个参数</description></property><property><name>Lora</name><value></value><description>glm-lora模型位置</description></property></GLM6B><LLAMA><property><name>Path</name><value>model/ggml-vicuna-13b-4bit-rev1.bin</value><description>llama模型位置</description></property><property><name>Strategy</name><value></value><description>llama模型参数 暂时不用</description></property></LLAMA></Models><Library><property><name>Type</name><value>bing</value><description>知识库类型:bing → cn.bing搜索,仅国内可用fess → fess搜索引擎mix → 知识库融合,需设置参数st → sentence_transformers,内测版本kg → 知识图谱,暂未启用</description></property><property><name>Show_Soucre</name><value>False</value><description>知识库显示来源</description></property><property><name>Size</name><value>200</value><description>知识库最大长度</description></property><property><name>Step</name><value>2</value><description>知识库默认上下文步长</description></property><MIX><property><name>Strategy</name><value>st:2 bing:5</value><description>知识库融合参数</description></property><property><name>Count</name><value>5</value><description>知识库抽取数量</description></property></MIX><BING><property><name>Count</name><value>5</value><description>知识库抽取数量</description></property><property><name>Academic</name><value>True</value><description>是否使用必应学术</description></property><property><name>Searc_Site</name><value>www.12371.cn</value><description>cn.bing站内搜索网址: 共产党员网,留空不使用</description></property></BING><FESS><property><name>Count</name><value>1</value><description>知识库抽取数量</description></property><property><name>Fess_Host</name><value>127.0.0.1:8080</value><description>Fess搜索引擎的部署地址</description></property></FESS><ST><property><name>Path</name><value>txt</value><description>知识库文本路径</description></property><property><name>Size</name><value>20</value><description>分块大小</description></property><property><name>Overlap</name><value>0</value><description>分块重叠长度</description></property><property><name>Count</name><value>3</value><description>知识库抽取数量</description></property><property><name>Model_Path</name><value>model/text2vec-large-chinese</value><description>向量模型存储路径</description></property><property><name>Device</name><value>cpu</value><description>faiss运行设备</description></property></ST><QDRANT><property><name>Path</name><value>txt</value><description>知识库文本路径</description></property><property><name>Model_Path</name><value>model/text2vec-large-chinese</value><description>向量模型存储路径</description></property><property><name>Qdrant_Host</name><value>http://localhost:6333</value><description>qdrant服务地址</description></property><property><name>Device</name><value>cpu</value><description>qdrant运行设备</description></property><property><name>Collection</name><value>qa_collection</value><description>qdrant集合名称</description></property></QDRANT><KG><property><name>Count</name><value>5</value><description>知识库抽取数量</description></property><property><name>Knowledge_Path</name><value></value><description>知识库的文件夹目录名称,若留空则为txt</description></property><property><name>Graph_Host</name><value></value><description>图数据库部署地址</description></property><property><name>Model_Path</name><value></value><description>信息抽取模型所在路径</description></property></KG></Library>
</configuration>

根据使用的不同模型,安装相关库

不同模型有不同的安装库,分别存在requirements.txtrequirements-****.txt文件中

可以依次使用下面命令(注意每次安装都替换掉requirements.txt文件即可)安装:

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simp1e

在这里插入图片描述

运行体验

安装完成所有库后,就可以根据需求,开始体验了。作为一个能兼容chatGLM-6B、chatRWKV、chatYuan、llama系列等几大语言模型的框架,可以分别体验运行不同模型的感受。

运行chatGLM-6B 大语言模型

wenda文件夹中打开终端命令,然后运行下面命令。

run_GLM6B.bat

默认参数在GTX1660Ti(6G显存)上运行良好。

自动会在浏览器打开地址:http://127.0.0.1:17860/

  • 18大主题功能
    • 18大prompt自动生成:只要输入主题,自动补全其它详细提示。比如使用问题生成:输入ChatGPT的使用,则会自动生成:根据以下内容,生成一个10个常见问题的清单:ChatGPT的使用

在这里插入图片描述

运行chatRWKV 大语言模型

wenda文件夹中打开终端命令,然后运行下面命令。

run_rwkv.bat

默认参数在GTX1660Ti(6G显存)上正常运行,但速度较慢。

运行llama 大语言模型

先从PyPI安装llama-cpp-python库:

pip install llama-cpp-python

wenda文件夹中打开终端命令,然后运行下面命令。

run_llama.bat

类AutoGPT功能

使用写论文,或者知识库直读,就能直接触发AutoGPT功能,自动通过多次调用模型,生成最终论文或者根据知识库相关内容生成多个根据内容回答问题的答案。当然这一块,小伙伴们还可以自己二次开发,开发更多的类AutoGPT功能哈。

在这里插入图片描述

类ChatPDF功能

该功能,需要先在config.xml文件中配置value为fess模式:
在这里插入图片描述

  • 接着下载fess-14.7.0-with-jdk.7z,解压到平时放软件的盘 见上面:相关代码及模型下载
  • 打开解压出来的fess-14.7.0-with-jdk\bin目录
  • 双击fess.in.bat

在这里插入图片描述

  • 双击fess.bat. 弹出命令行运行框. 将其最小化
  • 打开浏览器. 打开网址http://localhost:8080/
  • 点击右上角log in 输入账号:admin 密码:wenda 进行登录

在这里插入图片描述

  • 点击侧边栏中的Crawler. 点击File System

    • 点击右上角的Create New
    • Name输入便于记忆的资料库的名字
    • Paths输入资料库的地址(格式示例:file:///E:/pdf
    • 其余选项保持默认. 下滚至最下方点击Create
      在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述
  • 自动返回File System页面. 点击刚才创建的选项(自己输入的Name)
    在这里插入图片描述

  • 点击Create new job. 点击Create
    在这里插入图片描述

  • 进入侧边栏的System内的Scheduler. 可以看到很多任务

    • 目录的前面可以看到刚刚创建的job(示例:File Crawler - pdf search). 点击进入
    • 点击Start now. 刷新界面即可看到该任务正在运行. running
      在这里插入图片描述

在这里插入图片描述

  • 此时fess就在爬取文件的名字和内容. 可以在资源管理器看到cpu有负载
    在这里插入图片描述

  • 挂机。等待爬取完成即可尝试搜索关键词
    在这里插入图片描述

接着就能在知识库中进行测试了,下面这就表示已经导入到知识库了,右上角打开知识库,就能根据知识库来回答相关问题了:

在这里插入图片描述

参考资料

闻达:一个大规模语言模型调用平台

其它资料下载

如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/11280.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

浅析ChatGPT:历史沿革、应用现状及前景展望

关注公众号&#xff0c;发现CV技术之美 浅析ChatGPT&#xff1a;历史沿革、应用现状及前景展望 刘禹良1&#xff0c;白翔1&#xff0c;金连文2 1华中科技大学人工智能与自动化学院 2华南理工大学电子与信息学院 人工智能已成为新一代信息时代的核心技术&#xff0c;广泛应用于多…

图灵奖得主、AI 教父、神经网络大师——谷歌副总裁 Hinton 离职——称其对毕生工作感到后悔和恐惧

图灵奖得主、AI 教父、神经网络大师——谷歌副总裁 Hinton 离职——称其对毕生工作感到后悔和恐惧 目录

谁是近期全世界最受瞩目的聊天对象?

在今天&#xff0c;答案有且仅有一个&#xff0c;那就是ChatGPT。 Chat GPT——可能很多人被这个冗长的名字搞糊涂了。说实话&#xff0c;我第一眼也看不出到底什么意思&#xff0c;看了英文原文&#xff0c; GPT就是Generative Pre-training Transformer&#xff08;预训练生…

ChatGPT一枪打服谷歌AI人才!情人节组团加盟OpenAI

金磊 梦晨 发自 凹非寺量子位 | 公众号 QbitAI ChatGPT的号角一吹&#xff0c;连谷歌的顶尖AI人才都开始纷纷倒戈了&#xff01; 就在今天凌晨&#xff0c;前后仅半个小时功夫&#xff0c;就有2位谷歌大脑人才连夜宣布入盟OpenAI&#xff1a; 他们是Jason Wei和Hyung Won Chung…

ChatGPT 冲击下,特斯拉曾留不住的 AI 大牛,再次回归 OpenAI !

整理 | 屠敏 出品 | CSDN&#xff08;ID&#xff1a;CSDNnews&#xff09; 技术圈毕竟还是一个“圈”&#xff0c;兜兜转转都是会遇见。 半年前&#xff0c;特斯拉 AI 的中坚力量&#xff0c;即 AI 部门的主管 Andrej Karpathy 在给自己放了 4 个月的长假之后&#xff0c;选择离…

实测最像ChatGPT的中文产品:能解释三体、懂弱智吧的梗,内测开启人人都能试!...

明敏 发自 凹非寺量子位 | 公众号 QbitAI 最像ChatGPT的中文产品&#xff0c;出现了&#xff01; 昨晚&#xff0c;一个名叫Inspo的生成式对话AI&#xff0c;刚刚在“民间”开启内测&#xff0c;马上引发不小反响。 体验过的博主表示&#xff1a; 1分钟搞定3份策划&#xff0c;…

ChatGPT 有哪些 “激动人心的时刻“?以及自己的一些思考

文章目录 一、前言二、主要内容三、一些思考 &#x1f349; CSDN 叶庭云&#xff1a;https://yetingyun.blog.csdn.net/ 一、前言 近日&#xff0c;英伟达创始人兼 CEO 黄仁勋与 OpenAI 联合创始人及首席科学家伊尔亚-苏茨克维 (Ilya Sutskever) 展开了一次 “炉边谈话”。 黄…

ChatGPT可能马上取代你,这是它能做的十个工作

“我们必须把这些东西看作提高生产力的工具&#xff0c;而不是完全的替代品。” 文&#xff5c;韩旭阳 来源&#xff5c;华尔街见闻&#xff08;ID&#xff1a;wallstreetcn&#xff09; 封面来源&#xff5c;视觉中国 ChatGPT 的横空出世&#xff0c;在业界掀起了惊涛骇浪。专…

AI 2022:浪潮奔涌,百舸争流

编者按&#xff1a;2022年已接近尾声&#xff0c;但技术的发展永不落幕。许多人说&#xff0c;2022是生成式AI的一年。这一年里&#xff0c;我们见证了Stable Diffusion和DALL-E2等AI图像编辑/绘画工具的爆发&#xff0c;也目睹了ChatGPT狂热席卷全球。 但AI技术和产业的发展&a…

惊艳的产品背后,是锐利的设计思维

缘起 几年前&#xff0c;我偶然用一个 叫 Zine 的小app 写了两篇文章&#xff0c;感觉非常好。 后来在网上认识 了Zine 团队的创始人 Louis&#xff0c;也喜欢上了他们的另一个 App&#xff1a;Varlens&#xff0c; 最近他们推出了记笔记的 App Lattics&#xff0c;一些功能也…

谷歌AI绘画4大牛携手创业,天使估值7个亿

衡宇 发自 凹非寺量子位 | 公众号 QbitAI 最近的谷歌像个大漏勺&#xff0c;这不&#xff0c;又有AIGC核心成员联手跑路咯&#xff01; 量子位独家获悉&#xff0c;这回跟谷歌say byebye的&#xff0c;是文生图核心团队——AI绘画模型Imagen论文的四位核心作者&#xff0c;出走…

刘鹏报告:人工智能引领未来

2月16日&#xff0c;在“第七届挖贝北交所新三板领军企业年会暨挖贝金股奖颁奖盛典”上&#xff0c;刘鹏教授作主题演讲——《人工智能引领未来》&#xff0c;深度剖析了人工智能发展的三次飞跃&#xff0c;为现场嘉宾带来了一场科技盛宴。 刘鹏教授&#xff08;配图来自挖贝网…

#挑战Open AI!马斯克宣布成立xAI,你怎么看?# 马斯克的xAI:充满困难与希望

文章目录 1.什么是xAI公司&#xff1f;2.xAI公司的图标3.“反AI斗士”马斯克进军AI&#xff1a;期待与挑战并存3.1 关于马斯克……3.2 这位“反AI斗士”……3.3 我的看法3.4 可能会遇到的困难与优势3.5 蓄谋已久的马斯克……3.6 xAI“全明星阵容”3.7 总结 4.百模大战&#xff…

大模型111人:谷歌和OpenAI的人才战争

衡宇 发自 凹非寺量子位 | 公众号 QbitAI 当我们围观ChatGPT炸开的多场激战时&#xff0c;还有什么是暗流下激战的&#xff1f; 今天要关注的&#xff0c;不是违背“非盈利”初心的OpenAI&#xff0c;也不是商业模式面临颠覆的谷歌搜索。把目光从公司层面挪开&#xff0c;看向另…

什么是数字化营销?与ChatGPT结合能产生的化学反应?

随着时代的变迁&#xff0c;品牌营销的方式也变得愈加多样化。许多人或许都听说过数字化营销&#xff0c;在当今&#xff0c;这种营销手段非常受到品牌欢迎。今天&#xff0c;我们一起来了解一些有关数字营销的知识。看看它与当下大火的ChatGPT结合又能碰撞出怎样的火花&#x…

一脉相通!聊聊 ChatGPT 发展路线

作者 | 上衫翔二 整理 | NewBeeNLP 大家好&#xff0c;这里是 NewBeeNLP。 首页最近被chatGPT刷屏&#xff0c;但翔二博主左看右看发现很多想法似乎都是一脉相通的&#xff0c;于是连夜从存档中找了一些文章尝试理一理它的理论路线。 具身智能综述和应用&#xff08;Embodied …

下载微信公众号中的视频

转&#xff1a;https://www.zhihu.com/question/29576861 火狐浏览器&#xff1a; step 1 火狐浏览器 step 2 选择红色框 step 3 点击播放音频/视频&#xff0c;音频/视频文件就会生成出来&#xff0c;找到【type】里面的【media】&#xff0c;双击media文件&#xff0c;选择…

如何下载微信公众号里面的视频?

在微信公众号里面有时候会有一些不错的视频&#xff0c;我们想要下载下来保存到自己本地&#xff0c;这时该怎么样来操作呢?下面我们就一起来看看怎么样下载微信公众号里的视频文件吧&#xff01; ​1. 首先&#xff0c;我们进入到公众号里面找到要下载的视频&#xff0c;点击…

微信公众号文章下载的方法

最近下载了一款公众号文章下载器&#xff0c;可借助汉麻微云平台&#xff0c;实现公众号文章批量下载&#xff0c;再一键转发到官网以及官微、头条等自媒体平台。 操作步骤&#xff1a; 1、下载工具&#xff0c;此工具为绿色免安装版&#xff0c;启动即可使用&#xff08;下载…

专属微信公众号消息推送(java版)

前言&#xff1a;专属女朋友的微信推送消息&#xff0c;简单的写个文档。 gitee地址&#xff1a;消息推送 所用框架及Api springboot搭建应用天行数据Api&#xff08;彩虹屁、早安语句、天气&#xff09; 前置条件 申请微信公众号测试号及微信模板配置 申请一个微信公众号…