C语言深入理解指针(非常详细)(一)

目录

  • 内存和地址
    • 内存
    • 编址的理解
  • 指针变量和地址
    • 取地址操作符(&)
    • 指针变量和解引用操作符(*)
      • 指针变量
      • 如何拆解指针类型
      • 解引用操作符
    • 指针变量的大小
  • 指针变量类型的意义
    • 指针的解引用
    • 指针+-整数
  • const修饰指针
    • const修饰变量
    • const修饰指针变量

内存和地址

内存

在将内存和地址时我们先举一个生活中的例子:
假设有⼀栋宿舍楼,把你放在楼里,楼上有100个房间,但是房间没有编号,你的⼀个朋友来找你玩,
如果想找到你,就得挨个房子去找,这样效率很低,但是我们如果根据楼层和楼层的房间的情况,给每个房间编上号,如:

⼀楼:101102103...
⼆楼:201202203...

有了房间号,如果你的朋友得到房间号,就可以快速的找房间,找到你。

我们的姓名也是一样,如果没有姓名那么想去快速的找到一个不认识的人还是很难的

因此可见在一些情况下有编号可以提高办事的效率

我们知道内存是储存数据的,当我们需要计算这些数据时会用到CPU(中央处理器),CPU在需要用到数据时会在内存中读取,然后处理过后的数据也会放回内存
我们在买电脑时经常会看到8GB/16GB/32GB…那这些内存空间如何高效的管理呢?
其实是把内存划分为一个个的内存单元,每个内存单元的大小取1字节
下面补充一下计算机的常见单位

bit - ⽐特位     1byte = 8bit
byte - 字节      1KB = 1024byte
KB               1MB = 1024KB
MB               1GB = 1024MB
GB               1TB = 1024GB
TB               1PB = 1024TB
PB

其中,每个内存单元,相当于一个学生宿舍,一个字节空间里面能放8个比特位,就好比同学们住的八人间,每个人是⼀个比特位
每个内存单元也都有⼀个编号(这个编号就相当于宿舍房间的门牌号),有了这个内存单元的编号,CPU就可以快速找到⼀个内存空间。
生活中我们把门牌号也叫地址,在计算机中我们把内存单元的编号也称为地址。C语言中给地址起了新的名字叫:指针
所以我们可以理解为:
内存单元的编号是地址也是指针
内存储存的方式如图
在这里插入图片描述

编址的理解

CPU访问内存中的某个字节空间,必须知道这个字节空间在内存的什么位置,而因为内存中字节很多,所以需要给内存进行编址(就如同宿舍很多,需要给宿舍编号⼀样)。

计算机中的编址,并不是把每个字节的地址记录下来,而是通过硬件设计完成的

计算机内是有很多的硬件单元,而硬件单元是要互相协同工作的。所谓的协同,至少相互之间要能够进行数据传递。但是硬件与硬件之间是互相独立的,那么如何通信呢?答案很简单,用"线"连起来。
而CPU和内存之间也是有大量的数据交互的,所以,两者必须也用线连起来。不过,我们今天关心一组线,叫做地址总线

我们可以简单理解,32位机器有32根地址总线,每根线只有两态,表示0,1【电脉冲有无】,那么⼀根线,就能表示2种含义,2根线就能表示4种含义,依次类推。32根地址线,就能表示2^32种含义,每一种含义都代表一个地址。
地址信息被下达给内存,在内存上,就可以找到该地址对应的数据,将数据在通过数据总线传入CPU内寄存器。

在这里插入图片描述
所以在x86环境下char * 的指针变量和int*指针变量都是4个字节
在32位的机器上有32跟地址线,因此地址线上传输过来的电信号转换成数字信号,得到32个0/1组成的额外序列就是地址
而在x64环境下就有64个地址线,因此地址就是64个0/1组成的二进制序列,要存放这样的地址,就需要8个字节

指针变量和地址

取地址操作符(&)

理解了内存和地址的关系,我们再回到C语言,在C语言中创建变量其实就是向内存申请空间,比如:

#include <stdio.h>
int main()
{
int a = 10;
return 0;
}

上述的代码就是创建了整型变量a,内存中申请4个字节,用于存放整数10,其中每个字节都有地址,上图中4个字节的地址分别是:

0x006FFD70
0x006FFD71
0x006FFD72
0x006FFD73

那我们如何能得到a的地址呢?

这里就得学习⼀个操作符(&)-取地址操作符# const修饰指针

#include <stdio.h>
int main()
{
int a = 10;
&a;//取出a的地址
printf("%p\n", &a);
return 0;
}

按照上图图的例子,会打印处理:006FFD70&a取出的是a所占4个字节中地址较小的字节的地址
在这里插入图片描述
虽然整型变量占用4个字节,我们只要知道了第⼀个字节地址,顺藤摸瓜访问到4个字节的数据也是可行的

指针变量和解引用操作符(*)

指针变量

那我们通过取地址操作符(&)拿到的地址是⼀个数值,比如:0x006FFD70,这个数值有时候也是需要存储起来,方便后期再使用的,那我们把这样的地址值存放在哪里呢?答案是:指针变量

#include <stdio.h>
int main()
{
int a = 10;
int* pa = &a;//取出a的地址并存储到指针变量pa中
return 0;
}

指针变量也是⼀种变量,这种变量就是用来存放地址的,存放在指针变量中的值都会理解为地址。

如何拆解指针类型

我们看到pa的类型是 int* ,我们该如何理解指针的类型呢?

int a = 10;
int * pa = &a;

这里pa左边写的是 int* , * 是在说明pa是指针变量,而前面的 int 是在说明pa指向的是整型(int)类型的对象
类似的如果有一个char类型的变量ch,ch的地址,要放在什么类型的指针变量中呢?

char ch = 'w';
char *pc = &ch;

解引用操作符

当我们将地址保存在指针变量后,我们要怎么使用呢?由于只保存了地址,因此我们需要根据地址找到对应的数据。而如何找到对应的数据就需要用到解引用操作符(*)。

 #include <stdio.h>int main()
{
int a = 100;
int* pa = &a;
*pa = 0;
return 0;
}

*pa 的意思就是通过pa中存放的地址,找到指向的空间,pa其实就是a变量了;所以pa=0,这个操作符是把a改成了0
但是这里有一个疑问就是为什么要用指针来修改变量呢?为什么不直接a=0,?
其实在某些情况下,用指针会更加方便,比如:
在这里插入图片描述
我们可以看出打印的a值和b值不同,原因在于我们传的方式不同,一个传入了地址,一个没有传入,没有传入地址的b即使在函数中被修改,出了函数也无法保留修改的值,而传入地址的a,被修改后是可以保留的。
举个例子(例子可能不是很好,但差不多就是那个意思):你有一个房子在装修,装修后房子的地址没有变,但是房子却变了

指针变量的大小

前面的内容我们了解到,32位机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后是1或者0,那我们把32根地址线产生的2进制序列当做一个地址,那么一个地址就是32个bit位,需要4个字节才能存储。
如果指针变量是用来存放地址的,那么指针变量的大小就得是4个字节的空间才可以。
同理64位机器,假设有64根地址线,一个地址就是64个二进制位组成的二进制序列,存储起来就需要8个字节的空间,指针变的大小就是8个字节

在这里插入图片描述
在这里插入图片描述
结论:
• 32位平台下地址是32个bit位,指针变量大小是4个字节
• 64位平台下地址是64个bit位,指针变量大小是8个字节
• 注意指针变量的大小和类型是无关的,只要指针类型的变量,在相同的平台下,大小都是相同的

指针变量类型的意义

指针变量的大小和类型无关,只要是指针变量,在同一个平台下,大小都是一样的,为什么还要有各种各样的指针类型呢

指针的解引用

//代码1
#include <stdio.h>
int main()
{
int n = 0x11223344;
int *pi = &n;
*pi = 0;
return 0;
}
//代码2
#include <stdio.h>
int main()
{
int n = 0x11223344;
char *pc = (char *)&n;
*pc = 0;
return 0;
}

调试我们可以看到,代码1会将n的4个字节全部改为0,但是代码2只是将n的第一个字节改为0。
结论:指针的类型决定了,对指针解引用的时候有多大的权限(一次能操作几个字节)。
比如: char * 的指针解引用就只能访问一个字节,而int*的指针的解引用就能访问四个字节

指针±整数

#include <stdio.h>
int main()
{
int n = 10;
char *pc = (char*)&n;
int *pi = &n;
printf("%p\n", &n);
printf("%p\n", pc);
printf("%p\n", pc+1);
printf("%p\n", pi);
printf("%p\n", pi+1);
return 0;
}

在这里插入图片描述
我们可以看出, char * 类型的指针变量+1跳过1个字节, int 类型的指针变量+1跳过了4个字节。这就是指针变量的类型差异带来的变化。
结论:指针的类型决定了指针向前或者向后走一步有多大
(距离)

const修饰指针

const修饰变量

变量是可以修改的,如果把变量的地址交给一个指针变量,通过指针变量的也可以修改这个变量
但是如果我们希望一个变量加上一些限制,不能被修改,怎么做呢?这就是const的作用

#include <stdio.h>
int main()
{
int m = 0;
m = 20;//m是可以修改的
const int n = 0;
n = 20;//n是不能被修改的
return 0;
}

上述代码中n是不能被修改的,其实n本质是变量,只不过被const修饰后,在语法上加了限制,只要我们在代码中对n就行修改,就不符合语法规则,就报错,致使没法直接修改n。但是如果我们绕过n,使用n的地址,去修改n就能做到了

#include <stdio.h>
int main()
{
const int n = 0;
printf("n = %d\n", n);
int*p = &n;
*p = 20;
printf("n = %d\n", n);
return 0;
}

在这里插入图片描述
我们可以看到这里一个确实修改了,但是我们还是要思考一下,为什么n要被const修饰呢?就是为了不能被修改,如果p拿到n的地址就能修改n,这样就打破了const的限制,这是不合理的,所以应该让p拿到n的地址也不能修改n

const修饰指针变量

#include <stdio.h>
//代码1
void test1()
{
int n = 10;
int m = 20;
int *p = &n;
*p = 20;
p = &m; 
}
void test2()
{
//代码2
int n = 10;
int m = 20;
const int* p = &n;
*p = 20;   x
p = &m; 
}
void test3()
{
int n = 10;
int m = 20;
int *const p = &n;
*p = 20; 
p = &m;    x
}
void test4()
{
int n = 10;
int m = 20;
int const * const p = &n;
*p = 20;   x
p = &m;    x
}
int main()
{
//测试⽆const修饰的情况
test1();
//测试const放在*的左边情况
test2();
//测试const放在*的右边情况
test3();
//测试*的左右两边都有const
test4();
return 0;
}

结论:const修饰指针变量的时候
• const如果放在*的左边,修饰的是指针指向的内容,保证指针指向的内容不能通过指针来改变。但是指针变量本身的内容可变。
• const如果放在 * 的右边,修饰的是指针变量本身,保证了指针变量的内容不能修改,但是指针指向的内容,可以通过指针改变

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/113603.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

day01-ES6新特性以及ReactJS入门

课程介绍 ES6新特性ReactJS入门学习 1、ES6 新特性 1.2、let 和 const 命令 var 之前&#xff0c;我们写js定义变量的时候&#xff0c;只有一个关键字&#xff1a; var var 有一个问题&#xff0c;变量作用域的问题&#xff0c;作用域不可控&#xff0c;就是定义的变量有时会…

Linux操作系统--shell编程(正则表达式)

1..正则表达式概述 正则表达式使用单个字符串来描述、匹配一系列符合某个语法规则的字符串。在很多文本编辑器里,正则表达式通常被用来检索、替换那些符合某个模式的文本。在 Linux 中,grep,sed,awk 等文本处理工具都支持通过正则表达式进行模式匹配。 2.常规的匹配操作 3.…

【踩坑日记】STM32 USART 串口与 FreeRTOS 冲突

文章目录 问题描述问题出现的环境问题解决过程第一步第二步第三步第四步第五步第六步第七步第八步 后续验证一些思考类似的问题后记 问题描述 笔者使用 FreeRTOS 创建了两个任务&#xff0c;使两颗 LED 以不同频率闪烁&#xff0c;但是在加入串口 USART 部分代码后&#xff0c…

java八股文面试[多线程]——指令重排序

关于a的操作&#xff0c;由原来的6个指令&#xff0c;变成了4个指令。 1. 指令重排序的介绍 1&#xff09;指令重排序的类型 在执行程序时为了提高性能&#xff0c;编译器和处理器常常会对指令做重排序。 重排序分三种类型&#xff1a;编译器优化的重排序 编译器在不改变单线…

YOLO V5 和 YOLO V8 对比学习

参考文章&#xff1a; 1、YOLOv5 深度剖析 2、如何看待YOLOv8&#xff0c;YOLOv5作者开源新作&#xff0c;它来了&#xff01;? 3、anchor的简单理解 完整网络结构 YOLO v5和YOLO v8的Head部分 YOLO v8的Head 部分相比 YOLOv5 改动较大&#xff0c;换成了目前主流的解耦头结构…

【springboot】Spring Cache缓存:

文章目录 一、导入Maven依赖&#xff1a;二、实现思路&#xff1a;三、代码开发&#xff1a; 一、导入Maven依赖&#xff1a; <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-cache</artifactId><…

WordPress主题Zing V2.2.1/模块化WordPress响应式通用企业商城主题

WordPress主题Zing V2.2.1&#xff0c;模块化WordPress响应式通用企业商城主题。 功能介绍 百度熊掌号文章实时推送、原创保护 多设备支持自适应布局&#xff0c;支持电脑、Pad、手机以及各种浏览器 SEO优化首页、文章、页面、分类均支持自定义标题、关键字和描述 速度优化…

Django(7)-项目实战-发布会管理

登录功能 模板页面 sign/templates/index.html <!DOCTYPE html> <html> <head><title>Login Page</title> </head> <body><h1>发布会管理</h1><form action"/login/" method"post"><la…

idea 常用插件和常用快捷键 - 记录

idea 常用插件 记得下载插件完成后&#xff0c;点击 Apply 和 OK Alibaba Java Coding Guidelines 作用&#xff1a;使用该插件可以&#xff0c;自动提示相关的语法格式问题&#xff0c;格式参考 阿里巴巴代码规范 详情链接&#xff1a; 代码规范之Alibaba Java Coding G…

EXCEL中点击单元格,所在行和列都改变颜色

在日常工作中&#xff0c;尤其是办公室工作人群&#xff0c;尝尝需要处理大量的数据&#xff0c;在对数据进行修改时&#xff0c;时长发生看错行的事情&#xff0c;导致数据越改越乱&#xff0c;因此&#xff0c;我常用的一种方法就是选中单元格时&#xff0c;所在行、列标记为…

【AI】数学基础——高数(函数微分部分)

参考&#xff1a;https://www.bilibili.com/video/BV1mM411r7ko?p1&vd_source260d5bbbf395fd4a9b3e978c7abde437 唐宇迪&#xff1a;机器学习数学基础 文章目录 1.1 函数1.1.1 函数分类1.1.2 常见函数指/对数函数分段函数原函数&反函数sigmod函数Relu函数(非负函数)复…

keil5 快捷下载STM32系列芯片器件包的方法

以STM32H7系列的器件包为例,官网的下载网址为 https://sadevicepacksprodus.blob.core.windows.net/pack/Keil.STM32H7xx_DFP.3.1.1.pack 其中STM32H7xx为芯片系列编号,3.1.1为器件包的版本 如需下载其他系列和版本的器件包,只需把网址中的编号和版本换成对应的即可(前提是输入…

K8S:K8S自动化运维容器Docker集群

文章目录 一.k8s概述1.k8s是什么2.为什么要用K8S3.作用及功能4.k8s容器集群管理系统 二.K8S的特性1.弹性伸缩2.自我修复3.服务发现和复制均衡4.自动发布和回滚5.集中化配置管理和秘钥管理6.存储编排7.任务批量处理运行 三.K8S的集群架构四.K8S的核心组件1.Master组件&#xff0…

ATA-1222A宽带放大器的电子实验案例(案例合集)

ATA-1222A宽带放大器是安泰电子打造的高带宽功放产品&#xff0c;其采用ClassAB的工作模式&#xff0c;带宽高达22MHz&#xff0c;饱和输出功率40W&#xff0c;能兼容全球不同地区的电源标准要求。凭借其优异的指标参数受到不少电子工程师的喜欢&#xff0c;其在电子实验中的应…

香港服务器快还是台湾服务器快?

​  基于机房位置不同&#xff0c;香港服务器相对于台湾服务器在访问速度方面有一定的优势。香港服务器拥有CN2线路&#xff0c;因此访问速度较快。在网络服务商方面&#xff0c;中华电信等台湾服务商提供的带宽也具有很高的性价比。 香港服务器对大陆用户的影响 对于大陆用户…

WordPress导航主题/酷啦鱼导航主题模板

酷啦鱼导航主题模板&#xff0c;是一款基于WordPress的导航主题&#xff0c;酷啦鱼导航主题是个人基于wordpresscodestar work框架设计的简洁导航主题。 下载地址&#xff1a;https://bbs.csdn.net/topics/616084697

无涯教程-Android Mock Test函数

本节介绍了与 Android 相关的各种模拟测试。您可以在本地计算机上下载这些样本模拟测试,并在方便时离线解决。每个模拟测试均随附一个模拟测试键,可让您验证最终分数并为自己评分。 Mock Test I Mock Test II Mock Test III Mock Test IV Q 1 -什么是Android&#xff1f; A -A…

Python Opencv实践 - Sobel边缘检测

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_GRAYSCALE) print(img.shape)#Sobel边缘检测 #cv.sobel( src, ddepth, dx, dy[,ksize[, scale[, delta[, borderType]]]] ) #src:…

Flink+Paimon多流拼接性能优化实战

目录 &#xff08;零&#xff09;本文简介 &#xff08;一&#xff09;背景 &#xff08;二&#xff09;探索梳理过程 &#xff08;三&#xff09;源码改造 &#xff08;四&#xff09;修改效果 1、JOB状态 2、Level5的dataFile总大小 3、数据延迟 &#xff08;五&…

Java“牵手”京东商品详情数据,京东API接口申请指南

京东平台商品详情接口是开放平台提供的一种API接口&#xff0c;通过调用API接口&#xff0c;开发者可以获取京东商品的标题、价格、库存、月销量、总销量、库存、详情描述、图片等详细信息 。 获取商品详情接口API是一种用于获取电商平台上商品详情数据的接口&#xff0c;通过…