是否在业务中使用大语言模型?

ChatGPT取得了巨大的成功,在短短一个月内就获得了1亿用户,并激发了企业和专业人士对如何在他们的组织中利用这一工具的兴趣和好奇心。

但LLM究竟是什么,它们如何使你的企业受益?它只是一种炒作,还是会长期存在?

在这篇文章中我们将讨论上面这个问题并尝试解答为什么LLM对企业来说是一项伟大的投资,或者不是。是大炮打蚊子 还是 物尽其用?这就要看何时以及如何有效和高效地使用这个大模型了。

训练

LLM的训练是非常昂贵……但是这并不意味着每次要使用LLM完成特定任务时都要训练它,也不意味着你根本就不需要训练它。有很多方法可以利用LLM的现有知识和技能,无需从头开始训练。

LLM能够根据单词和短语相互跟随的概率生成文本。也可以通过让它“根据上下文阅读”来“模仿”这种行为。这就好比给某人一本书,然后让他们在书中找到他们认为可能有X问题答案的那一章。一旦读者找到这一章,他们就会阅读,然后试图向你解释他们刚刚读到的内容。

这需要某种程度上对他进行提示,这也就是我们常说的prompt。网上有很多关于关于提示教程,提示工程以及如何为LLM生成良好的提示。所以当你试图得到上下文答案时,LLM可以很好的工作。但不要指望机器知道一切,因为它们擅长的是放置文字,而不是阐述事实。

只有当你想让机器像专业人士一样说话时,你才需要重新训练它。

业务专业术语

所有组织和企业都有自己的行话和特定于其领域的技术术语。例如,Jam可以指甜甜的Smucker草莓果冻,但也可以指非正式播放的音乐。

这意味着不是每个人都能很容易地理解特定业务使用的语言,除非他们熟悉其词汇和概念。所以对于不熟悉该领域的潜在客户或合作伙伴来说可能是一个障碍。使用llm可以将技术语言翻译成更自然和可访问的语言。

LLM可以根据所需的风格和细节水平,使用提更简单的单词或示例来帮助解释复杂术语或概念的含义,这可以使信息对任何人都更具吸引力和可理解性。

知识图谱是在图结构中组织信息的一种方式,其中实体及其关系表示为节点和边。这使得存储和访问信息比使用传统文本格式更容易。知识图谱可以独立于任何大型语言模型(llm)构建,并且知识图谱也可以从llm的功能中受益。

在这里插入图片描述

要创建知识图谱,需要从数据源(如pdf)中提取实体和关系,并将它们插入图数据库中。llm可以帮助完成这项任务,通过生成代码将数据插入到数据库中。

在这里插入图片描述

llm还可以帮助使用自然语言查询知识图谱,以简单易懂的方式解释结果。通过这种方式,用户可以使用文本与数据进行交互,并从知识图中获得事实和相关的答案。

LLM可以从提供的上下文中使用更简单的单词或示例来帮助解释复杂术语或概念的含义

敏感数据

还记得三星的问题吧,工程师的一些机密源代码被意外上传到ChatGPT,

你一直觉得,这种风险仅适用于使用OpenAI网站上的免费ChatGPT界面。其实任何被称为“免费”的东西都可能以某种方式获得投资回报。比如使用你的信息来改进模型。一个稍微好一些的选择是通过API使用付费LLM服务,该服务不会使用任何敏感数据进行再训练。

显示现在就好很多了,有许多替代ChatGPT的方法。比如Falcon、Llama、Palm或其他性能与ChatGPT相似甚至更好的模型。我们还可以根据自己的具体需求定制自己的模型或解决方案。

在这里插入图片描述

通过托管自己的LLM,可以确保它仅用于预期目的,并且可以在将来需要时对其进行重新训练。还可以探索通过使用这些模型生成的数据,以改进您的业务。例如,查看向模型提出的最重要的问题,可以创建更好的业务解决方案并从中获利。

有了开源的基础模型,我们可以搭建自己的LLM,并且随时调整训练。

部分还是全部

这里我们以推荐系统为例:

推荐系统是一种基于某些标准推荐项目或操作的系统。例如,Spotify使用你的收听历史和偏好来为你创建个性化的播放列表。你可以把它想象成根据其他人的喜好推荐音乐,这可能与你的喜好相匹配。

LLM也可以做到这一点,通过嵌入来衡量两个信息片段之间的相似性或差异性,比如一个问题和一个答案。但是如果我们只把LLM简化到这个程度(只生成嵌入),那么推荐系统不是要更简单吗,而且推荐系统能够得到更准确的结果,需要的资源还更少。

那我们为什么要用LLM来做这个呢?

找到对任何给定问题的最准确的回答,然后解释为什么它是一个好的匹配,这是推荐引擎无法做到的。嵌入不仅可以对文本做同样的事情,还可以对任何来源做同样的事情;从音频到图像。推荐系统需要额外的组件来处理和标记这些类型的信息。

所以这是一种种特殊情况,我们的推荐需要音频你和图像吗?所以在使用前需要评估要解决的问题否需要LLM所能提供的所有功能,或者是否可以用更传统的方式解决问题。(其实上面的音频和图像只要增加几个模型就可以了,投入远远要比使用LLM低很多)

如果只用了LLM的一少部分功能,那么肯定有比他更好的更传统的解决方案

总结

LLM不仅仅是一种炒作,它们其实是一种强大而通用的技术,可以实现业务目标并提高客户满意度。但是LLM并不是灵丹妙药,使用时尤其需要需要仔细规划、评估和优化,以确保其有效性和效率。

如果你打算以正确的方式将llm整合到业务中,记住:

专业的人做专业的事

https://avoid.overfit.cn/post/6280016cc99749aa827c8841e6e83da2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/114227.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ceph peering机制-状态机

本章介绍ceph中比较复杂的模块: Peering机制。该过程保障PG内各个副本之间数据的一致性,并实现PG的各种状态的维护和转换。本章首先介绍boost库的statechart状态机基本知识,Ceph使用它来管理PG的状态转换。其次介绍PG的创建过程以及相应的状…

ceph架构及 IO流程

CEPH是由多个节点构成的集群,它具有良好的可扩展性和可靠性。节点之间相互通信以达到: 存储和检索数据 数据复制 监控集群的健康状况 保证数据的完整性 检测故障并恢复 基本架构如下图: 分布式对象存储系统RADOS是CEPH最为关键的技术&a…

Java之API详解之BigDecimal类的详细解析

7 BigDecimal类 7.1 引入 首先我们来分析一下如下程序的执行结果: public class BigDecimalDemo01 {public static void main(String[] args) {System.out.println(0.09 0.01);}} 这段代码比较简单,就是计算0.09和0.01之和,并且将其结果…

SoC 总线结构学习记录之系统存储总线(System Memory Bus)与私有设备总线

蜂鸟 E203 SOC总线结构:  蜂鸟 E203 内核 BIU 的系统存储接口 ICB 连接系统存储总线,通过其访问 SoC 中的若干存储组件,譬如 ROM,Flash 的只读区间等。  蜂鸟 E203 内核 BIU 的私有设备接口 ICB 连接私有设备总线&#xff0c…

JVM的故事——虚拟机字节码执行引擎

虚拟机字节码执行引擎 文章目录 虚拟机字节码执行引擎一、概述二、运行时栈帧结构三、方法调用 一、概述 执行引擎Java虚拟机的核心组成之一,它是由软件自行实现的,能够执行那些不被硬件直接支持的指令集格式。 对于不同的虚拟机实现,执行引…

【深入解读Redis系列】Redis系列(五):切片集群详解

首发博客地址 https://blog.zysicyj.top/ 系列文章地址[1] 如果 Redis 内存很大怎么办? 假设一台 32G 内存的服务器部署了一个 Redis,内存占用了 25G,会发生什么? 此时最明显的表现是 Redis 的响应变慢,甚至非常慢。 这…

iPhone 15 Pro与iPhone 13 Pro:最大的预期升级

如果你在2021年首次发布iPhone 13 Pro时就抢到了它,那么你的合同很可能即将到期。虽然距离iPhone 15系列还有几周的时间,但你可能已经在想:是时候把你的旧iPhone升级为iPhone 15 Pro了吗? 我们认为iPhone 13 Pro是你现在能买到的最好的手机之一。但如果你想在2023年晚些时…

使用openpyxl来创建一个月的日程表

首先你心里要有一张表的样子,openpyxl才能帮你创建出其余的29张。 import openpyxl from openpyxl.styles import Alignment, Font import calendar from datetime import datework_path rXX\YY\ZZ\日报-九月.xlsxtry:workbook openpyxl.load_workbook(work_path…

python中的文件操作

我们平常对文件的基本操作,大概可以分为三个步骤(简称文件操作三步走): ① 打开文件 ② 读写文件 ③ 关闭文件 【注意事项】 注意:可以只打开和关闭文件,不进行任何读写 文件打开 open函数&#xff…

前端三大Css处理器之Less

Less是Css预处理器之一,分别有Sass、Less、Stylus这三个。 Lesshttps://lesscss.org/ Less是用JavaScript编写的,事实上,Less是一个JavaScript库,他通过混合、变量、嵌套和规则设置循环扩展了原生普通Css的功能。Less的少数…

ELK安装、部署、调试(五)filebeat的安装与配置

1.介绍 logstash 也可以收集日志,但是数据量大时太消耗系统新能。而filebeat是轻量级的,占用系统资源极少。 Filebeat 由两个主要组件组成:harvester 和 prospector。 采集器 harvester 的主要职责是读取单个文件的内容。读取每个文件&…

python-下载数据-制作全球地震散点图:JSON格式

查看JSON数据 import json# 探索数据的结构 filename eq_data_1_day_m1.geojson with open(filename) as f:all_eq_data json.load(f)readable_file readable_eq_data.json with open(readable_file, w) as f:json.dump(all_eq_data, f, indent4)json.load() 将数据转换为P…

Python爬虫分布式架构 - Redis/RabbitMQ工作流程介绍

在大规模数据采集和处理任务中,使用分布式架构可以提高效率和可扩展性。本文将介绍Python爬虫分布式架构中常用的消息队列工具Redis和RabbitMQ的工作流程,帮助你理解分布式爬虫的原理和应用。 为什么需要分布式架构? 在数据采集任务中&#…

MonoDETR: Depth-guided Transformer for Monocular 3D Object Detection 论文解读

MonoDETR论文解读 abstract 单目目标检测在自动驾驶领域,一直是一个具有挑战的任务。现在大部分的方式都是沿用基于卷积的2D 检测器,首先检测物体中心,后通过中心附近的特征去预测3D属性。 但是仅仅通过局部的特征去预测3D特征是不高效的&…

Revit SDK:SolidSolidCut 实体几何裁剪

前言 这个例子介绍了 Revit 中的一个实体几何裁剪。 内容 这个例子介绍如何使用 SolidSolidCutUtils 的接口来做几何裁剪以及取消几何裁剪。内容相对来说非常简单。 namespace Autodesk.Revit.DB {public static class SolidSolidCutUtils{public static void AddCutBetwee…

虚拟化技术原理

计算虚拟化 介绍 把物理主机上物理资源(CPU,内存,IO外设),通过虚拟化层抽象成超量、等量的逻辑资源(虚拟CPU,虚拟内存,虚拟IO设备),然后重新组合形成新的虚…

独家首发!openEuler 主线集成 LuaJIT RISC-V JIT 技术

RISC-V SIG 预期随主线发布的 openEuler 23.09 创新版本会集成 LuaJIT RISC-V 支持。本次发版将提供带有完整 LuaJIT 支持的 RISC-V 环境并带有相关软件如 openResty 等软件的支持。 随着 RISC-V SIG 主线推动工作的进展,LuaJIT 和相关软件在 RISC-V 架构下的支持也…

使用php实现微信登录其实并不难,可以简单地分为三步进行

使用php实现微信登录其实并不难,可以简单地分为三步进行。 第一步:用户同意授权,获取code //微信登录public function wxlogin(){$appid "";$secret "";$str"http://***.***.com/getToken";$redirect_uriu…

鲁棒优化入门(7)—Matlab+Yalmip两阶段鲁棒优化通用编程指南(下)

0.引言 上一篇博客介绍了使用Yalmip工具箱求解单阶段鲁棒优化的方法。这篇文章将和大家一起继续研究如何使用Yalmip工具箱求解两阶段鲁棒优化(默认看到这篇博客时已经有一定的基础了,如果没有可以看看我专栏里的其他文章)。关于两阶段鲁棒优化与列与约束生成算法的原…

机器人编程怎么入门?

机器人已经在我们中间存在了二三十年。如今,机器人在我们的文化中比以往任何时候都更加根深蒂固。大多数机器人机器用于各种装配线,或在世界各地的矿山或工业设施中执行密集的物理操作。 还有一些家用机器人,工程师正在对机器人进行编程&…