全套解决方案:基于pytorch、transformers的中文NLP训练框架,支持大模型训练和文本生成,快速上手,海量训练数据!

全套解决方案:基于pytorch、transformers的中文NLP训练框架,支持大模型训练和文本生成,快速上手,海量训练数据!

1.简介

  1. 目标:基于pytorchtransformers做中文领域的nlp开箱即用的训练框架,提供全套的训练、微调模型(包括大模型、文本转向量、文本生成、多模态等模型)的解决方案;
  2. 数据
    • 从开源社区,整理了海量的训练数据,帮助用户可以快速上手;
    • 同时也开放训练数据模版,可以快速处理垂直领域数据;
    • 结合多线程、内存映射等更高效的数据处理方式,即使需要处理百GB规模的数据,也是轻而易举;
  3. 流程:每一个项目有完整的模型训练步骤,如:数据清洗、数据处理、模型构建、模型训练、模型部署、模型图解;
  4. 模型:当前已经支持gpt2clipgpt-neoxdollyllamachatglm-6bVisionEncoderDecoderModel等多模态大模型;
  5. 多卡串联
    :当前,多数的大模型的尺寸已经远远大于单个消费级显卡的显存,需要将多个显卡串联,才能训练大模型、才能部署大模型。因此对部分模型结构进行修改,实现了训练时推理时
    的多卡串联功能。
  • 模型训练
中文名称文件夹名称数据数据清洗大模型模型部署图解
中文文本分类chinese_classifier
中文gpt2chinese_gpt2
中文clipchinese_clip
图像生成中文文本VisionEncoderDecoderModel
vit核心源码介绍vit model
Thu-ChatGlm-6b(v1)simple_thu_chatglm6b
🌟chatglm-v2-6b🎉chatglm_v2_6b_lora
中文dolly_v2_3bdolly_v2_3b
中文llamachinese_llama
中文bloomchinese_bloom
中文falcon(注意:falcon模型和bloom结构类似)chinese_bloom
中文预训练代码model_clm
百川大模型model_baichuan
模型修剪✂️model_modify
llama2 流水线并行pipeline

2.文本分类模型

本部分,介绍中文的文本分类模型,适用于二分类、多分类等情况。使用transformers库。

  • 处理数据code_01_processdata.ipynb
  • 数据介绍
    1. 本案例使用的是一个外卖平台的评论数据,对评论的文本做了分类(分为好评和差评)
    2. 当你把code_01_processdata.ipynb文件跑完之后,就可以看到在📁data_all里面有一个📁data,里面有三个文件,样式都是像下面👇这样的

上图是一个batch的数据,或者所有的文本分类的数据样式:

  1. text下面的红色条,就是一个个句子。
  2. label里面有红色有绿色,就是表示标签分类。
  3. transformers包做分类的时候,数据要求就这两列。

注意点:

  1. 数据需要分为train_data.csv,test_data.csv,valid_data.csv,这三个csv文件注意是使用,分割开的。
  2. 数据不可以有缺失值
  3. 数据最好只含有两列:label,text
  • label:表示标签,最好为整型数值。0,1,2,3,4等
  • text:表示文本,(看你需求,可以有符号,也可以没有标点符号)
  1. train_data.csv,test_data.csv,valid_data.csv这三个数据里面,不要有数据相同的,不然会造成数据泄漏。
  • 训练模型code_02_trainmodel.ipynb

  • 数据训练流程
    以一个batch为例:

    1. Tokenizer会将数据中的text转换成三个矩阵(或者叫三个Tensor),分别叫input_ids,token_type_ids,attention_mask,至于怎么转换的,我们先不做详细介绍(本仓库后续会介绍)。
    2. pretrained model在被加载之前,需要设置一大堆模型的参数,至于要设置什么参数,我们也不做详细介绍。
    3. Trainer就是一个训练器,也需要预先设置好一大堆参数。至于要设置什么参数,我们也不做详细介绍。
    4. Trainer会把input_ids,token_type_ids,attention_mask;还有数据自带的标签label;还有pretrained model都加载进来,进行训练;
    5. 当所有batch的数据更新完之后,最终就会生成一个模型。your new model就诞生了。
    6. 对于刚开始学习大模型做nlp分类的任务,其实不需要考虑那么多细节,只需要注意数据流程。
  • 注意点:

    1. 这个步骤非常看显存大小。显卡显存越大越好。batch_size,eval_size大小取决于显存大小。
    2. 在实际工程中,会先使用Tokenizer把所有的文本转换成input_ids,token_type_ids,attention_mask,然后在训练的时候,这步就不再做了,目的是减少训练过程中cpu处理数据的时间,不给显卡休息时间。
    3. 在使用Tokenizer把所有的文本做转换的期间,如果设置的文本的长度上限为64,那么会把大于64的文本截断;那些少于64的文本,会在训练的时候,在喂入模型之前,把长度补齐,这么做就是为了减少数据对内存的占用。
    1. 预测code_03_predict.ipynb

    2. 这个时候,就是搞个句子,然后丢给一个pipeline(这个就是把Tokenizer你的大模型放在一起了),然后这个pipeline就给你返回一个分类结果。

    3. 常见的就是使用pipeline,如果更加复杂的话,比如修改模型,这个时候,就比较复杂了(后面会再次介绍)。

    1. 部署

    2. 简单的部署相对于预测,其实就是再加一层web端口,fastapi包就可以实现。

    3. 高级一点的部署相对于预测,就需要把模型从pytorch转换成onnx格式的,这样可以提高推理效率(也不一定,就是举个例子),可能也不会使用web端口(http协议)了,会使用rpc协议等方法。这部分现在先不看。

3.中文gpt2

  1. 本文,将介绍如何使用中文语料,训练一个gpt2
  2. 可以使用你自己的数据训练,用来:写新闻、写古诗、写对联等
  3. 我这里也训练了一个中文gpt2模型,使用了612万个样本,每个样本有512个tokens,总共相当于大约31亿个tokens
  • 安装包

需要准备好环境,也就是安装需要的包

pip install -r requirements.txt

像是pytorch这种基础的包肯定也是要安装的,就不提了。

  • 数据来源

    1. 获得数据:数据链接,关注公众号【统计学人】,然后回复【gpt2】即可获得。
    2. 获得我训练好的模型(使用了15GB的数据(31亿个tokens),在一张3090上,训练了60多小时)
  • 数据格式

    1. 数据其实就是一系列文件夹📁,然后每一个文件夹里面有大量的文件,每一个文件都是.csv格式的文件。其中有一列数据是content
    2. 每一行的content就代表一句话
    3. 虽然数据有15GB那么大,但是处理起来一点也不复杂,使用 datasets
      包,可以很轻松的处理大数据,而我只需要传递所有的文件路径即可,这个使用 glob 包就能完成。
  • 训练代码train_chinese_gpt2.ipynb

    1. 现在训练一个gpt2代码,其实很简单的。抛开处理数据问题,技术上就三点:tokenizergpt2_modelTrainer
    2. tokenizer使用的是bert-base-chinese
      ,然后再添加一下bos_tokeneos_tokenpad_token
    3. gpt2_model使用的是gpt2,这里的gpt2我是从0开始训练的。而不是使用别人的预训练的gpt2模型。
    4. Trainer训练器使用的就是transformersTrainer模块。(支撑多卡并行,tensorboard等,都写好的,直接调用就行了,非常好用)
  • 模型

  • 推理代码infer.ipynb

这个是chinese-gpt2的推理代码

  1. 将代码中的model_name_or_path = "checkpoint-36000"里面的"checkpoint-36000",修改为模型所在的路径。
  2. 然后运行下面一个代码块,即可输出文本生成结果
  3. 可以参考这个代码,制作一个api,或者打包成一个函数或者类。
  • 交互机器人界面chatbot.py
  1. 修改代码里面的第4行,这一行值为模型所在的位置,修改为我分享的模型文件路径。
model_name_or_path = "checkpoint-36000"
  1. 运行
python chatbot.py
  1. 点击链接,即可在浏览器中打开机器人对话界面
  • 更多
  1. 这个完整的项目下来,其实我都是全靠huggingface文档、教程度过来的.
  2. 我做的东西,也就是把Tokenizer改成中文的了,然后也整理了数据,别的大部分东西,都不是我做的了.
  3. 原文链接为https://huggingface.co/course/zh-CN/chapter7/6?fw=pt.

其实,我更喜欢做应用,但是也要理解相关的背后原理,目前还在研究相关的gpt2原理还有相关的推理细节,这是我整理的链接,希望可以共同进步

  1. https://huggingface.co/blog/how-to-generate
  2. https://huggingface.co/gpt2
  3. https://huggingface.co/gpt2-large

4.中文clip模型

  1. 本文将介绍,如何从0到1的训练一个中文clip模型。
  2. 在处理数据的过程中,训练的过程中,需要的注意事项。
  3. 从数据流的角度,看看clip模型是怎么处理数据的,模型是怎么构建的。image和text的模型的差异性,两个模型是怎么合并起来计算loss的。
  • clip模型介绍

CLIP的英文全称是Contrastive Language-Image Pre-training,即一种基于对比文本-图像对的预训练方法或者模型。
CLIP是一种基于对比学习的多模态模型,与CV中的一些对比学习方法如moco和simclr不同的是,
CLIP的训练数据是文本-图像对:一张图像和它对应的文本描述,这里希望通过对比学习,
模型能够学习到文本-图像对的匹配关系。
如下图所示,CLIP包括两个模型:

  1. Text Encoder和Image Encoder,其中Text Encoder用来提取文本的特征,可以采用NLP中常用的text transformer模型;

  2. Image Encoder用来提取图像的特征,可以采用常用CNN模型或者vision transformer。

上面这段文字来源于https://zhuanlan.zhihu.com/p/493489688

  1. 从数据上看:之前相似度计算,都是两个文本对:text - text。只不过现在都是text - image了。
  2. clip是两个模型(具体长什么样子,后面再说)
  • 2.1 text-model:负责把text转换成向量。
  • 2.2 image-model:负责把image转换成向量。
  • 2.3 然后把上面两个向量,做交叉计算loss,然后loss反向传播,这样两个模型的参数都会更新。
  1. 其实你想啊,这个image-model处理图像的,其实也可以改为处理视频、处理3d模型等。那简直是格局打开🫴了。我现在没有数据,后面也打算做一个。
  2. 你再想想,text-image => text-image-video-3d这样联合起来,是不是更好。没数据,没机器,做不了。
  3. 有些人可能感觉,你这人,就知道TMD吹牛,来来来,我带你研究研究clip模型的源码。
  • 数据
  1. 直接点击链接https://pan.baidu.com/s/1wGmXUNP021OWnW7Kik7q1A?pwd=gd3c
    来获得。
  2. 把下载好的文件,也就是test-2.6w.csvtrain-137w.csv放在文件夹📁bigdata/raw_data里面。
  3. 以此运行processdta_01.ipynbprocessdta_02.ipynbprocessdta_02.ipynb用来处理数据。
  • 3.1 processdta_01.ipynb:用来下载数据,大概下载了10多个小时。
  • 3.2 processdta_02.ipynb:用来筛选数据,不是所有的图片数据都是可以用的,这一步非常坑。需要留意。如果图片没有筛选好,在你训练到中间的时候,突然一下因为图片无法加载导致错误,从而训练中断了。
  • 3.3 processdta_03.ipynb:用来把数据干净的数据处理好,合并好,生成新的,漂亮的训练数据。
  1. 其实完整下来看,数据清洗,就是把符合格式的照片筛选出来,然后进行训练。
  • 数据总结

说到底,你的数据只要整理成这样的一个样式即可

textimage_path
河南一村民继承祖上的一金碗,专家鉴定:此碗是溥仪皇帝用过的bigdata/image_data/test-9282.jpg
著名钢琴家郎朗:我永远不会放弃演奏bigdata/image_data/test-2644.jpg
科幻动作电影《超体》10月24日来袭bigdata/image_data/test-13199.jpg
  1. text:这一列对应图片的标注,或者和图片相关的文本。
  2. image_path:这一列对应图片所在你电脑本地上的路径。
  3. 是的,搞了半天,数据就是这么简单。
  • 数据预处理

这里的数据预处理,是我随便起的名字。说白了,就是这么会是:

  1. 使用tokenizertext转换成input_idsattention_mask.

  2. 使用processorimage转换成pixel_values.

  3. 处理text,那还是很快的。百万级别的数据,可能2~3分钟就行了。

  4. 因为image太大了,只能在训练的时候,每一batch,才能去加载image
    ,这就导致训练的时候特别慢。倒不是因为我的3090算力不行,全都TMD卡在计算机IO上了,非常让人难受。

  • 模型部分

终于讲解到clip的模型部分了。这个clip模型实在是太灵活了,你可以做很多个版本,这里我们挑几个比较常见的结构,来分享一下。

  • 常见的clip模型

这里值得是常见的clip模型,特指的是transformers包的clip模型。

  1. clip主要就是分为两个部分,一个是CLIPTextTransformer,一个是CLIPVisionTransformer,说白了就是一个处理text,一个处理image。
  2. CLIPTextTransformerCLIPVisionTransformer的核心,都共用了一个模型结构CLIPEncoder
    。也就是CLIP编码部分。(这里说的共用,值得是模型框架相同,而不是模型训练的时候,参数也相同。)

Q:有些人就问了,text和image两个生成的数据都不一样,比如text转换成input_idsattention_maskimage
转换成pixel_values;他们怎么可以使用一个模型结构CLIPEncoder

A:这个也是非常好回答的,因他俩又不是直接使用CLIPEncoder
,前后都加了一些万金油的模型组件(比如embeddinglinear
等),模型输出的时候,也是这么做的。还是应了那句话,就看你怎么吧数据转换成hidden_states,以及怎么把hidden_states输出出去。

Q:CLIPTextTransformerCLIPVisionTransformer输出的维度也不一定一样吧,怎么计算交叉损失?

A: 也很简单啦,加个linear对齐一下就行了。

看看CLIPTextTransformerCLIPVisionTransformer的内心:

  • 中文版本的clip模型

上面的常见的clip模型,确实是好,其实你只要换一个支持中文的新tokenizer,然后从0️⃣开始训练即可。
但是这么搞,没什么创意呀。其实我第一次就是这么干的,直接支持中文的新tokenizer。但是训练了一天,loss基本上没变化。我内心其实是崩溃的。

后来,我研究了一下transformers包里面的chinese-clip模型代码。我发现,chinese-clip相对于clip
。就是把常规的CLIPTextTransformer换成了bert版本的。啊对,这就破案了。这个奉上代码截图。

  • 后续改进
  1. 因为训练image这类型的任务,非常吃资源,不管是我的显存还是我的磁盘。目前数据占用我硬盘100GB
  2. 针对loss不下降,下次如果再让我做,我打算先把clip模型的vit部分先固定住,然后训练bert来拟合vit-output
  3. 也可也固定bert模型,训练vit模型;
  4. 也可以拆开做,反正本质上都是Encoder,然后计算相似度。

5. 图生文image-encoder-decoder

之前在huggingfacehttps://huggingface.co/nlpconnect/vit-gpt2-image-captioning上看到这个模型.

  1. 感觉这个模型很有趣,想法很好。
  2. 发现这个模型关于中文的不多。
  3. 之前的clip训练其实挺失败的,loss没有下降.

主要也就是抱着学习的态度,把源码看懂,把流程跑通。分享中间的细节和踩坑经历。

  1. 使用vit来作为encoder部分,输出encoder_hidden_states绿色部分1
  2. 使用gpt2来作为decoder部分,接受encoder_hidden_states,绿色部分3
  3. 如果encoder输出的encoder_hidden_statesdecoder接受的encoder_hidden_states维度不一样,就加个linear,绿色部分2
  • 模型训练需要的数据样式
    训练的时候,模型需要的数据主要有两个维度:
  1. pixel_valueimage通过processor生成
  2. labeltext通过tokenizer生成的input_ids
  3. 计算loss的时候,其实和gpt2一模一样的(自回归,本质上就是向后错位一下)。

目前已经把训练好的模型,发布在huggingface上了。https://huggingface.co/yuanzhoulvpi/vit-gpt2-image-chinese-captioning

本模块处理数据的方式和clip模型差不多,可以看隔壁文件夹,训练clip的数据处理思路。

  1. 只要把processdta_02.ipynb文件替换即可。
  2. 执行顺序依然按照着processdta_01.ipynbprocessdta_02.ipynbprocessdta_03.ipynb
  • 训练部分train_encoder_decoder.ipynb

    1. 处理图像,使用的是"google/vit-base-patch16-224"模型。
    2. 处理文本,使用的是"yuanzhoulvpi/gpt2_chinese"模型。
    3. 最后就是把两个模型通过VisionEncoderDecoderModel粘起来。
  • 训练的loss

  • 训练的信息
    gpu使用的是3090,模型大概是2.16亿个参数。花了超过20个小时。但是大部分时间都是卡在IO上(加载图片上)

  • 推理用你自己训练
    参考infer_encoder_decoder.ipynb

  • 直接用

from transformers import (VisionEncoderDecoderModel, AutoTokenizer,ViTImageProcessor)
import torch
from PIL import Image
vision_encoder_decoder_model_name_or_path = "yuanzhoulvpi/vit-gpt2-image-chinese-captioning"#"vit-gpt2-image-chinese-captioning/checkpoint-3200"processor = ViTImageProcessor.from_pretrained(vision_encoder_decoder_model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(vision_encoder_decoder_model_name_or_path)
model = VisionEncoderDecoderModel.from_pretrained(vision_encoder_decoder_model_name_or_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}def predict_step(image_paths):images = []for image_path in image_paths:i_image = Image.open(image_path)if i_image.mode != "RGB":i_image = i_image.convert(mode="RGB")images.append(i_image)pixel_values = processor(images=images, return_tensors="pt").pixel_valuespixel_values = pixel_values.to(device)output_ids = model.generate(pixel_values, **gen_kwargs)preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)preds = [pred.strip() for pred in preds]return predspredict_step(['bigdata/image_data/train-1000200.jpg'])

6.vit 源码

  1. 之前都搞过clipimage-encoder-decoder。现在哪里还怕搞不懂vit.
  2. 这里主要分享一下vit的最核心的部分。
  • vit 核心的数据内容

vit想法非常牛,但是数据处理的思想更牛,之前都没提出来过。

载对于一个图片,将一个图片分割成N块。巧妙的使用nn.Conv2d

  • 初始化
import torch
from torch import nn #base parameterimage_size=224 # 图片的width和height
patch_size=16  # 将图片的分为块,每一块的大小为16x16,这样就有(224//16)^2 = 14 ^2 = 196个
num_channels=3 #  R,G, B
hidden_size=768 # 输出的hidden_size
batch_size = 16 # 一批数据有多少
  • 创建一个分块器和一个样本数据(一个batch)
#分块器
project = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)#样本数据(一个`batch`) 
#batch_size, num_channels, height, width = pixel_values.shape
pixel_values = torch.randn(batch_size, num_channels, image_size, image_size)pixel_values.shape 
  • 输出分块的大小
project(pixel_values).shape #> torch.Size([16, 768, 14, 14])
  • 数据再转换一下,image的embedding就完成了。
image_embedding = project(pixel_values).flatten(2).transpose(1, 2)
image_embedding.shape 
#> torch.Size([16, 196, 768]) # batch_size, seq_length, embedding_dim

这个时候,就已经和文本的数据一样了。维度都是(batch_size, seq_length, embedding_dim),再向下推导,就是transformers了。没什么可介绍的了。

项目链接:https://github.com/yuanzhoulvpi2017/zero_nlp

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/115083.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WebGPU加载Wavefront .OBJ模型文件

在开发布料模拟之前,我想使用 WebGPU 开发强大的代码基础。 这就是为什么我想从 Wavefront .OBJ 文件加载器开始渲染 3D 模型。 这样,我们可以快速渲染 3D 模型,并构建一个简单而强大的渲染引擎来完成此任务。 一旦我们有了扎实的基础&#x…

视频文件损坏无法播放如何修复?导致视频文件损坏的原因

如果我们遇到因视频文件损坏而无法正常播放,我们该怎么办?这种情况通常意味着视频文件已经损坏。我们不能访问、编辑或使用它们。那么应该用什么正确的工具和修复程序来修复视频呢? 视频文件损坏的原因 了解视频损坏如何修复之前&#xff0c…

【C51基础实验 LED流水灯】

51单片机项目基础篇 LED流水灯1、硬件电路设计和原理分析2、软件设计2.1、利用循环和移位操作符功能实现:LED流水灯2.2、利用利用封装好的库函数功能实现:LED流水灯 3、编译结果4、结束语 LED流水灯 前言: 前几篇学会了LED驱动原理&#xff…

Mysql001:Mysql概述以及安装

前言:本课程将从头学习Mysql,以我的工作经验来说,sql语句真的太重要的,现在互联网所有的一切都是建立在数据上,因为互联网的兴起,现在的数据日月增多,每年都以翻倍的形式增长,对于数…

数据库CPU飙高问题定位及解决

在业务服务提供能力的时候,常常会遇到CPU飙高的问题,遇到这类问题,大多不是数据库自身问题,都是因为使用不当导致,这里记录下业务服务如何定位数据库CPU飙高问题并给出常见的解决方案。 CPU 使用率飙升根因分析 在分…

概念解析 | 量子时代的灵感:探索量子感知技术

注1:本文系“概念解析”系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是:量子感知技术。 量子时代的灵感:探索量子感知技术 量子感知技术是一个充满希望和挑战的新兴领域。在此,我们将深入探讨这个主题,概述其背景,解释其工作原理,讨论现有的…

mov怎么改成mp4?跟我一起操作吧

mov怎么改成mp4?mov因为并不是一种常见的视频文件格式,因此大家对这种视频文件可能知道的并不多,但如果你是用的是苹果手机,那么你会发现苹果手机拍摄的视频转移到电脑上后就是mov格式的,因为mov格式的视频并没有受到大…

JDBC使用了哪种设计模式

JDK中提供了操作数据库的接口,比如 java.sql.Driver java.sql.Connection java.sql.Statement java.sql.PreparedStatement 不同的数据库厂商提供操作自己数据库的驱动包, 比如mysql public class Driver extends NonRegisteringDriver implements jav…

一篇文章带你了解-selenium工作原理详解

前言 Selenium是一个用于Web应用程序自动化测试工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE(7, 8, 9, 10, 11),Mozilla Firefox,Safari,Google Chrome&#xff0c…

DC电源模块不同的尺寸可以适应实际应用场景

BOSHIDA DC电源模块不同的尺寸可以适应实际应用场景 DC电源模块是现代电子设备的必备部件之一,其可提供稳定的直流电源,保证电子设备正常运行。DC电源模块尺寸的选择直接影响到其适应的应用场景及其性能表现。本文将从尺寸方面分析DC电源模块的适应性&a…

【zookeeper】zookeeper介绍

分布式协调技术 在学习ZooKeeper之前需要先了解一种技术——分布式协调技术。那么什么是分布式协调技术?其实分布式协调技术主要用来解决分布式环境当中多个进程之间的同步控制,让他们有序的去访问某种临界资源,防止造成"脏数据"的…

C++ list模拟实现

list模拟实现代码&#xff1a; namespace djx {template<class T>struct list_node{T _data;list_node<T>* _prev;list_node<T>* _next;list_node(const T& x T()):_data(x),_prev(nullptr),_next(nullptr){}};template<class T,class Ref,class Pt…

Mac操作系统Safari 17全新升级:秋季推出全部特性

苹果的内置浏览器可能是Mac上最常用的应用程序&#xff08;是的&#xff0c;甚至比Finder、超级Mac Geeks还要多&#xff09;。因此&#xff0c;苹果总是为其浏览器Safari添加有用的新功能。在今年秋天与macOS Sonoma一起推出的第17版中&#xff0c;Safari可以帮助你提高工作效…

活用 命令行通配符

本文是对 阮一峰老师命令行通配符教程[1]的学习与记录 通配符早于正则表达式出现,可以看作是原始的正则表达式. 其功能没有正则那么强大灵活,而胜在简单和方便. - 字符 切回上一个路径/分支 如图: !! 代表上一个命令, 如图: [Linux中“!"的神奇用法](https://www.cnblogs.…

不会还有人排长队吃饭吧?用这招,快速搞定!

随着现代企业对员工福利和工作环境的关注不断增加&#xff0c;企业智慧食堂已经成为了企业管理的重要组成部分。 智慧收银系统的出现不仅使员工用餐变得更加便捷和高效&#xff0c;还提供了一种强大的管理工具&#xff0c;有助于企业更好地理解员工消费行为、优化食堂运营&…

比较器的工作原理及性能指标介绍

一、什么是比较器 比较器的功能是比较两个或更多数据项&#xff0c;以确定它们是否相等&#xff0c;或者确定它们之间的大小关系和排列顺序&#xff0c;这称为比较。可以实现此比较功能的电路或设备称为比较器。比较器是将模拟电压信号与参考电压进行比较的电路。比较器的两个…

说说Flink中的State

分析&回答 基本类型划分 在Flink中&#xff0c;按照基本类型&#xff0c;对State做了以下两类的划分&#xff1a; Keyed State&#xff0c;和Key有关的状态类型&#xff0c;它只能被基于KeyedStream之上的操作&#xff0c;方法所使用。我们可以从逻辑上理解这种状态是一…

掌握逻辑漏洞复现技术,保护您的数字环境

环境准备 这篇文章旨在用于网络安全学习&#xff0c;请勿进行任何非法行为&#xff0c;否则后果自负。 1、支付逻辑漏洞 攻击相关介绍 介绍&#xff1a; 支付逻辑漏洞是指攻击者利用支付系统的漏洞&#xff0c;突破系统的限制&#xff0c;完成非法的支付操作。攻击者可以采…

ZKP硬件加速

1. 引言 本文重点关注&#xff1a; 1&#xff09;何为硬件加速&#xff1f;为何需要硬件加速&#xff1f;2&#xff09;ZKP的关键计算原语&#xff1a; Multiscalar MultiplicationNumber Theoretic TransformationArithmetic Hashes 3&#xff09;所需的硬件资源4&#xff0…

2D-2D对极几何中的基本矩阵、本质矩阵和单应矩阵

本文主要参考高翔博士的视觉SLAM十四讲第二版中的7.3章节内容。文章目录 1 对极约束2 本质矩阵E3 单应矩阵 1 对极约束 现在&#xff0c;假设我们从两张图像中得到了一对配对好的特征点&#xff0c;如图7.9所示&#xff08;假如后面我们有若干对这样的匹配点&#xff0c;根据这…