yolov8机器视觉-工业质检

使用训练好的模型进行预测

yolo predict task=detect model=训练好的模型路径 source=测试图片文件夹路径 show=True

效果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

切换模型进行训练(yolov8s)

修改main.py训练参数文件

使用云gpu进行训练,很方便:点击链接转至在线云gpu

在这里插入图片描述
修改训练参数:
在这里插入图片描述
此文件位于:yolov8-main->ultralytics->datasets->keypoint.yaml

修改训练素材路径位置

在这里插入图片描述

安装依赖

在这里插入图片描述

修改default.yaml

在这里插入图片描述

开启训练

在这里插入图片描述

from  n    params  module                                       arguments                     0                  -1  1       928  ultralytics.nn.modules.conv.Conv             [3, 32, 3, 2]                 1                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]                2                  -1  1     29056  ultralytics.nn.modules.block.C2f             [64, 64, 1, True]             3                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               4                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]           5                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              6                  -1  2    788480  ultralytics.nn.modules.block.C2f             [256, 256, 2, True]           7                  -1  1   1180672  ultralytics.nn.modules.conv.Conv             [256, 512, 3, 2]              8                  -1  1   1838080  ultralytics.nn.modules.block.C2f             [512, 512, 1, True]           9                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]                 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           12                  -1  1    455008  ultralytics.nn.modules.block.VoVGSCSPC       [768, 256]                    13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           15                  -1  1    114864  ultralytics.nn.modules.block.VoVGSCSPC       [384, 128]                    16                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           18                  -1  1    356704  ultralytics.nn.modules.block.VoVGSCSPC       [384, 256]                    19                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           21                  -1  1   1417920  ultralytics.nn.modules.block.VoVGSCSPC       [768, 512]                    22        [15, 18, 21]  1   2118757  ultralytics.nn.modules.head.Detect           [7, [128, 256, 512]]          
YOLOv8s summary: 301 layers, 10281013 parameters, 10280997 gradientsNew https://pypi.org/project/ultralytics/8.0.168 available 😃 Update with 'pip install -U ultralytics'
Ultralytics YOLOv8.0.118 🚀 Python-3.10.12 torch-2.0.1+cu118 CUDA:0 (NVIDIA GeForce RTX 3060, 12044MiB)
yolo/engine/trainer: task=detect, mode=train, model=/home/featurize/work/yolo/yolov8-main/yolov8s.pt, data=/home/featurize/work/yolo/yolov8-main/ultralytics/datasets/keypoint.yaml, epochs=100, patience=50, batch=4, imgsz=640, save=True, save_period=-1, cache=False, device=0, workers=6, project=None, name=None, exist_ok=False, pretrained=False, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=0, resume=False, amp=True, fraction=1.0, profile=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, v5loader=False, tracker=botsort.yaml, save_dir=runs/detect/train8
Downloading https://ultralytics.com/assets/Arial.Unicode.ttf to /home/featurize/.config/Ultralytics/Arial.Unicode.ttf...
100%|███████████████████████████████████████| 22.2M/22.2M [00:00<00:00, 279MB/s]
Overriding model.yaml nc=80 with nc=7from  n    params  module                                       arguments                     0                  -1  1       928  ultralytics.nn.modules.conv.Conv             [3, 32, 3, 2]                 1                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]                2                  -1  1     29056  ultralytics.nn.modules.block.C2f             [64, 64, 1, True]             3                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               4                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]           5                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              6                  -1  2    788480  ultralytics.nn.modules.block.C2f             [256, 256, 2, True]           7                  -1  1   1180672  ultralytics.nn.modules.conv.Conv             [256, 512, 3, 2]              8                  -1  1   1838080  ultralytics.nn.modules.block.C2f             [512, 512, 1, True]           9                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]                 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           12                  -1  1    591360  ultralytics.nn.modules.block.C2f             [768, 256, 1]                 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           15                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]                 16                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           18                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]                 19                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           21                  -1  1   1969152  ultralytics.nn.modules.block.C2f             [768, 512, 1]                 22        [15, 18, 21]  1   2118757  ultralytics.nn.modules.head.Detect           [7, [128, 256, 512]]          
Model summary: 225 layers, 11138309 parameters, 11138293 gradientsTransferred 349/355 items from pretrained weights
TensorBoard: Start with 'tensorboard --logdir runs/detect/train8', view at http://localhost:6006/
AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n...
AMP: checks passed ✅
train: Scanning /home/featurize/work/yolo/yolov8-main/datasets/injector_datasets
train: New cache created: /home/featurize/work/yolo/yolov8-main/datasets/injector_datasets/labels/trainImages.cache
val: Scanning /home/featurize/work/yolo/yolov8-main/datasets/injector_datasets/l
val: New cache created: /home/featurize/work/yolo/yolov8-main/datasets/injector_datasets/labels/valImages.cache
Plotting labels to runs/detect/train8/labels.jpg... 
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/axisgrid.py:118: UserWarning: The figure layout has changed to tightself._figure.tight_layout(*args, **kwargs)
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) insteadif pd.api.types.is_categorical_dtype(vector):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/environment/miniconda3/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.with pd.option_context('mode.use_inf_as_na', True):
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.plt.savefig(fname, dpi=200)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/plotting.py:276: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.plt.savefig(fname, dpi=200)
optimizer: AdamW(lr=0.000909, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)
Image sizes 640 train, 640 val
Using 4 dataloader workers
Logging results to runs/detect/train8
Starting training for 100 epochs...Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size1/100      1.49G      7.714      9.472      1.749         97        640:  Downloading https://ultralytics.com/assets/Arial.ttf to /home/featurize/.config/Ultralytics/Arial.ttf...1/100      1.49G      7.788       9.67      1.762         80        640:  Downloading https://ultralytics.com/assets/Arial.ttf to /home/featurize/.config/Ultralytics/Arial.ttf...1/100      1.49G      7.561      9.627      1.769         39        640:  Downloading https://ultralytics.com/assets/Arial.ttf to /home/featurize/.config/Ultralytics/Arial.ttf...1/100      1.49G      7.513      9.496      1.781         47        640:  
100%|█████████████████████████████████████████| 755k/755k [00:00<00:00, 195MB/s]0%|                                                | 0.00/755k [00:00<?, ?B/s]0%|                                                | 0.00/755k [00:00<?, ?B/s]10%|███▊                                    | 72.0k/755k [00:00<00:01, 673kB/s]6%|██▌                                     | 48.0k/755k [00:00<00:01, 480kB/s]22%|█████████                                | 168k/755k [00:00<00:00, 834kB/s]100%|████████████████████████████████████████| 755k/755k [00:00<00:00, 2.53MB/s]
100%|████████████████████████████████████████| 755k/755k [00:00<00:00, 2.63MB/s]1/100      1.52G      7.088      8.711      1.734         75        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521       0.26      0.336      0.312     0.0911Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size2/100      1.59G      2.256      2.264       1.08         56        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.587      0.616       0.72      0.406Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size3/100      1.59G       1.74      1.608      1.029         36        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.832      0.757      0.817      0.496Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size4/100      1.58G      1.578      1.259      1.006         70        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.728      0.762      0.857      0.542Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size5/100      1.56G      1.534      1.063      1.002         79        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.889      0.827      0.883      0.574Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size6/100      1.52G      1.439     0.9197     0.9803         64        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.978       0.85      0.893      0.617Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size7/100      1.57G      1.346     0.7932     0.9889         47        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.841      0.911      0.907      0.609Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size8/100      1.53G      1.304     0.7377     0.9628         27        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.847      0.929      0.953      0.669Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size9/100      1.53G      1.214     0.6728       0.95         56        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.936      0.968      0.988      0.711Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size10/100      1.51G      1.187      0.636      0.938         53        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.951      0.983      0.983      0.699Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size11/100      1.51G      1.218     0.6118     0.9495         41        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.974      0.974      0.989      0.688Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size12/100      1.51G      1.285     0.6297     0.9604         40        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.944      0.911      0.987      0.697Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size13/100      1.51G      1.239     0.6125     0.9448         46        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.973      0.987      0.987      0.701Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size14/100      1.51G      1.173     0.5838     0.9342         48        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.972      0.981      0.992      0.721Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size15/100      1.51G      1.095      0.554      0.917         82        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.993          1      0.995      0.744Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size16/100      1.51G       1.11     0.5582     0.9378         47        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991      0.995      0.995      0.722Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size17/100      1.53G      1.129     0.5628      0.929         47        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.988      0.992      0.995      0.708Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size18/100      1.53G      1.111      0.542     0.9084         53        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.988      0.989      0.993      0.733Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size19/100      1.51G      1.074     0.5287     0.9198         89        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521       0.99      0.981      0.991      0.757Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size20/100      1.51G      1.051     0.5111     0.9007         49        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.988      0.985      0.992      0.726Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size21/100      1.53G      1.048     0.5056      0.905         58        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.985       0.99      0.994      0.741Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size22/100      1.53G      1.027     0.5085     0.9059         79        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.993      0.991      0.995      0.774Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size23/100      1.57G      1.026     0.4933     0.9085         67        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.989      0.991      0.995      0.746Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size24/100      1.55G     0.9934     0.4795     0.9004         56        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521       0.99      0.991      0.995      0.775Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size25/100      1.53G     0.9916     0.4686     0.8907         50        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991      0.988      0.994      0.763Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size26/100      1.51G     0.9791     0.4671     0.8914         40        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.989      0.991      0.995      0.764Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size27/100      1.53G     0.9848     0.4532      0.885        107        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.992      0.989      0.994      0.761Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size28/100      1.53G     0.9716     0.4541      0.905         34        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521       0.99      0.989      0.994      0.778Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size29/100      1.53G     0.9671      0.455     0.8927         55        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.992       0.99      0.994      0.765Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size30/100      1.53G     0.9647      0.449     0.8885         43        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.989      0.988      0.994      0.785Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size31/100      1.53G      0.935     0.4334     0.8953         55        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991       0.99      0.994      0.755Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size32/100      1.53G     0.9801     0.4383     0.8881         89        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991      0.999      0.995      0.786Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size33/100      1.53G     0.9725     0.4386     0.8858         40        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995      0.999      0.995      0.747Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size34/100      1.51G     0.9803      0.444     0.8938         65        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995          1      0.995      0.743Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size35/100      1.51G     0.9246     0.4233     0.8812         48        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.992      0.995      0.995      0.771Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size36/100      1.51G     0.9377     0.4236      0.884        105        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.993      0.991      0.995      0.768Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size37/100      1.51G     0.9631      0.428     0.8964         56        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995      0.991      0.995      0.749Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size38/100      1.51G     0.9436     0.4259     0.8921         37        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994      0.991      0.995      0.804Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size39/100      1.57G     0.9083     0.4119     0.8846         85        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995      0.992      0.995      0.764Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size40/100      1.53G     0.9459     0.4209     0.8814         43        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995       0.99      0.994      0.768Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size41/100      1.53G     0.9183     0.4124     0.8725         57        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.996      0.992      0.995      0.774Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size42/100      1.51G     0.8959     0.4084     0.8798         71        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.996      0.991      0.995      0.787Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size43/100      1.51G     0.8924     0.4123     0.8796         55        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.993      0.991      0.995      0.778Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size44/100      1.51G     0.9295     0.4177     0.8847         84        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994      0.991      0.995      0.796Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size45/100      1.51G     0.9271     0.4138     0.8807         44        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.993      0.992      0.994      0.747Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size46/100      1.51G     0.8881     0.4022     0.8704         52        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521       0.99      0.991      0.995      0.781Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size47/100      1.51G     0.8914     0.4048     0.8768         36        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.985      0.999      0.995      0.786Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size48/100      1.51G     0.9257     0.4075     0.8832         39        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991          1      0.995      0.785Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size49/100      1.51G     0.9245     0.4068     0.8723         42        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994          1      0.995      0.805Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size50/100      1.51G     0.8915     0.3981     0.8768         76        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.992      0.999      0.995      0.771Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size51/100      1.51G     0.8769     0.3943     0.8804         51        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.992      0.991      0.995      0.785Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size52/100      1.51G     0.8647     0.3863     0.8672         47        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994      0.991      0.995      0.785Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size53/100      1.51G      0.878     0.3854     0.8713         22        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.996      0.991      0.995      0.782Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size54/100      1.51G     0.8804     0.3957     0.8731         47        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994      0.998      0.995      0.784Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size55/100      1.51G     0.8723     0.3911     0.8733         57        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.993      0.998      0.995      0.777Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size56/100      1.51G     0.8739     0.3835     0.8791         49        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.987      0.998      0.995      0.756Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size57/100      1.53G     0.8824     0.3906     0.8712         56        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.984      0.998      0.995      0.776Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size58/100      1.53G     0.8651     0.3856       0.87         40        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521       0.99      0.987      0.994      0.799Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size59/100      1.51G     0.8714     0.3881     0.8755         55        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995      0.981      0.995      0.774Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size60/100      1.51G     0.8584     0.3883     0.8713         54        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.996      0.981      0.995      0.781Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size61/100      1.51G     0.8537     0.3796     0.8658         38        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.984      0.999      0.995      0.801Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size62/100      1.51G     0.8624      0.388     0.8758         40        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.992       0.99      0.995      0.793Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size63/100      1.51G      0.841     0.3857      0.864         52        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991      0.993      0.995      0.767Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size64/100      1.51G     0.8598     0.3821       0.87         85        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.989      0.991      0.995      0.778Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size65/100      1.51G     0.8324     0.3825     0.8609         58        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.993      0.991      0.995      0.784Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size66/100      1.51G     0.8577     0.3801     0.8708         46        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991      0.997      0.995      0.786Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size67/100      1.51G     0.8637     0.3803     0.8723         65        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.988      0.998      0.995      0.791Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size68/100      1.51G      0.841     0.3772     0.8654         82        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.979          1      0.995      0.781Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size69/100      1.51G     0.8025     0.3636     0.8565         51        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.984      0.985      0.994      0.797Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size70/100      1.51G      0.835     0.3664     0.8588         49        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.992      0.981      0.994      0.784Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size71/100      1.59G      0.845     0.3734     0.8596         38        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521       0.98      0.995      0.994      0.785Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size72/100      1.59G     0.8206     0.3693     0.8711         38        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991       0.99      0.994      0.785Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size73/100      1.55G     0.8175     0.3641     0.8638         63        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995      0.991      0.995      0.796Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size74/100      1.55G     0.8229     0.3611     0.8556         39        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994      0.991      0.995      0.814Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size75/100      1.54G     0.8236     0.3669     0.8611         77        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.992      0.991      0.994      0.797Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size76/100      1.54G     0.8275     0.3671     0.8672         39        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995      0.991      0.994      0.798Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size77/100      1.54G      0.819     0.3612     0.8627         37        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.996      0.991      0.995      0.804Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size78/100      1.58G     0.8077     0.3593     0.8684         55        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.996      0.992      0.995        0.8Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size79/100      1.56G     0.8067      0.359     0.8571         49        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.996      0.993      0.995      0.799Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size80/100      1.58G     0.8012     0.3588     0.8646         52        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.997      0.991      0.995      0.798Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size81/100      1.56G     0.8159      0.364     0.8627         61        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.989      0.999      0.995      0.813Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size82/100      1.59G     0.8072     0.3583     0.8635         60        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.992      0.999      0.995      0.814Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size83/100      1.53G     0.8153     0.3605     0.8662         49        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995      0.999      0.995      0.791Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size84/100      1.53G     0.7978     0.3544     0.8585         58        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994          1      0.995      0.786Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size85/100      1.51G     0.7747      0.351     0.8523         48        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.995          1      0.995      0.804Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size86/100      1.51G     0.7944     0.3504     0.8563         67        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.997          1      0.995      0.803Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size87/100      1.57G     0.7787     0.3409     0.8558         29        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994      0.999      0.995      0.799Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size88/100      1.53G     0.7863     0.3461     0.8556         55        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521       0.99      0.999      0.995       0.79Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size89/100      1.51G     0.7875     0.3413     0.8485         18        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991      0.999      0.995      0.799Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size90/100      1.51G      0.794     0.3489     0.8616         38        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994      0.999      0.995      0.809Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size91/100      1.51G     0.8086     0.3484     0.8653         87        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.997          1      0.995      0.811Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size92/100      1.51G     0.7732     0.3432      0.862         31        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.997          1      0.995      0.801Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size93/100      1.51G     0.7827     0.3431     0.8462         86        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.997          1      0.995      0.807Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size94/100      1.51G     0.7678     0.3417     0.8454         43        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.997          1      0.995      0.808Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size95/100      1.53G     0.7703     0.3397     0.8499         42        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.996      0.999      0.995       0.81Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size96/100      1.53G     0.7611      0.338     0.8461         47        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.994      0.999      0.995      0.811Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size97/100      1.53G     0.7629     0.3372     0.8534         41        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.991      0.999      0.995      0.807Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size98/100      1.53G     0.7512     0.3332     0.8415         51        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.997      0.992      0.995      0.809Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size99/100      1.53G     0.7686     0.3399     0.8489         37        640: 1Class     Images  Instances      Box(P          R      mAP50  mall         46        521      0.997      0.992      0.995      0.808Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size100/100      1.53G     0.7692     0.3428     0.8536         64        640: 1Class     Images  Instances      Box(P          R      mAP50  m
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(save_dir, dpi=250)all         46        521      0.997      0.992      0.995      0.812
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(plot_fname, dpi=250)100 epochs completed in 0.119 hours.
Optimizer stripped from runs/detect/train8/weights/last.pt, 22.5MB
Optimizer stripped from runs/detect/train8/weights/best.pt, 22.5MBValidating runs/detect/train8/weights/best.pt...
Ultralytics YOLOv8.0.118 🚀 Python-3.10.12 torch-2.0.1+cu118 CUDA:0 (NVIDIA GeForce RTX 3060, 12044MiB)
Model summary (fused): 168 layers, 11128293 parameters, 0 gradientsClass     Images  Instances      Box(P          R      mAP50  m
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:492: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(save_dir, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:517: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(save_dir, dpi=250)all         46        521      0.994      0.991      0.995      0.814胶塞         46        121      0.997          1      0.995      0.825推杆尾部         46        124      0.997          1      0.995       0.86针尾部         46        129      0.997          1      0.995      0.878针嘴         46         92      0.986          1      0.995      0.731歪嘴         46         14          1      0.936      0.995       0.78螺口         46         15      0.993          1      0.995      0.841小胶塞         46         26       0.99          1      0.995      0.785
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 33014 (\N{CJK UNIFIED IDEOGRAPH-80F6}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 22622 (\N{CJK UNIFIED IDEOGRAPH-585E}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 25512 (\N{CJK UNIFIED IDEOGRAPH-63A8}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 26438 (\N{CJK UNIFIED IDEOGRAPH-6746}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 23614 (\N{CJK UNIFIED IDEOGRAPH-5C3E}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 37096 (\N{CJK UNIFIED IDEOGRAPH-90E8}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 38024 (\N{CJK UNIFIED IDEOGRAPH-9488}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 22068 (\N{CJK UNIFIED IDEOGRAPH-5634}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 27498 (\N{CJK UNIFIED IDEOGRAPH-6B6A}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 34746 (\N{CJK UNIFIED IDEOGRAPH-87BA}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 21475 (\N{CJK UNIFIED IDEOGRAPH-53E3}) missing from current font.fig.savefig(plot_fname, dpi=250)
/home/featurize/work/yolo/yolov8-main/ultralytics/yolo/utils/metrics.py:452: UserWarning: Glyph 23567 (\N{CJK UNIFIED IDEOGRAPH-5C0F}) missing from current font.fig.savefig(plot_fname, dpi=250)
Speed: 0.5ms preprocess, 2.5ms inference, 0.0ms loss, 1.2ms postprocess per image
Results saved to runs/detect/train8

观察mAP50,在第三个Epoch时,已经达到了0.8,从第8个Epoch开始,已经稳定在了0.9,收敛很快
模型最终保存到了Results saved to runs/detect/train8

模型转换

在这里插入图片描述
修改main.py文件,mode更改为 onnx,并且model路径更改为训练好的模型地址,执行python main.py即可
执行完毕后将会在刚训练好的模型路径下生成转换后的onnx模型文件
在这里插入图片描述

使用yolov8s预训练模型训练的模型再试试我们的预测

yolo predict task=detect model=runs/yolov8s/best.pt source=datasets/injector_datasets/images/testImages show=True

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

预测效果还是很不错的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/116243.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringMVC-学习笔记

文章目录 1.概述1.1 SpringMVC快速入门 2. 请求2.1 加载控制2.2 请求的映射路径2.3 get和post请求发送2.4 五种请求参数种类2.5 传递JSON数据2.6 日期类型参数传递 3.响应3.1 响应格式 4.REST风格4.1 介绍4.2 RESTful快速入门4.3 简化操作 1.概述 SpringMVC是一个基于Java的Web…

Javase | IO流

目录&#xff1a; 1.输入 (Intput/Read)2.输出 (Output/Write)3.IO4.IO流5.IO流的分类&#xff1a;5.1 分类总述5.2 按照 “流的方向” 进行分类5.3 按照 “读取数据的方式” 进行分类 6.IO包下要重点掌握的流&#xff1a;6.1 文件专属 (流)6.2 转换流 ( 将字节流转换为字符流 …

复杂性分析与算法设计:解锁计算机科学的奥秘

文章目录 算法复杂性分析的基本概念时间复杂度空间复杂度 常见的算法设计策略1. 分治法2. 贪心法3. 动态规划 算法设计的实际应用1. 网络路由2. 图像处理3. 人工智能 算法的选择和性能分析结论 &#x1f389;欢迎来到数据结构学习专栏~复杂性分析与算法设计&#xff1a;解锁计算…

Rust 学习笔记(持续更新中…)

一、 编译和运行是单独的两步 运行 Rust 程序之前必须先编译&#xff0c;命令为&#xff1a;rustc 源文件名 - rustc main.rs编译成功之后&#xff0c;会生成一个二进制文件 - 在 Windows 上还会生产一个 .pdb 文件 &#xff0c;里面包含调试信息Rust 是 ahead-of-time 编译的…

1688API技术解析,实现关键词搜索淘宝商品(商品详情接口等)批量获取,可高并发

要使用1688API接口采集商品详情&#xff0c;可以按照以下步骤进行&#xff1a; 获取API接口权限&#xff1a;申请1688的app key和app secret&#xff0c;并获取access_token。 编写API请求代码&#xff1a;使用Python等编程语言&#xff0c;编写API请求代码。以下是一个Python…

python爬虫—requests

一、安装 pip install requests 二、基本使用 1、基本使用 类型 &#xff1a; models.Response r.text : 获取网站源码 r.encoding &#xff1a;访问或定制编码方式 r.url &#xff1a;获取请求的 url r.content &#xff1a;响应的字节类型 r.status_code &#xff1a;响应…

【unity插件】使用BehaviorDesigner插件制作BOSS的AI行为树

文章目录 前言素材插件一、基础使用二、敌人物理攻击三、敌人面向玩家四、敌人法术攻击五、随机进行攻击六、敌人不同的阶段推荐学习视频源码完结 前言 Behavior Designer是一个行为树插件&#xff0c;是一款为了让策划&#xff0c;程序员&#xff0c;美术人员方便使用的可视化…

IDEA 设置提示信息

IDEA 设置提示信息 File->Settings->Editor->Code Completion 取消勾选 Math case

python3.11教程1:python基础语法、程序控制、函数

文章目录 一、Python简介1.1 为什么学习python1.2 python安装与配置1.3 python解释器1.4 命令行参数1.4.1 sys.argv变量1.4.2 -c和-m选项 1.5 解释器的运行环境1.5.1 编码格式1.5.2 编码声明 二、Python基础语法2.1 行结构2.2 变量&#xff08;标识符&#xff09;2.3 字节串2.4…

【实训项目】传道学习助手APP设计

1.设计摘要 跨入21世纪以来,伴随着时代的飞速发展&#xff0c;国民对教育的重视度也有了进一步的提升。我们不难发现虽然很多学习内容有学习资料或者答案&#xff0c;但是这些内容并不能达到让所有求学的人对所需知识进行完全地理解与掌握。所以我们需要进行提问与求助。那么一…

实现不同局域网间的文件共享和端口映射,使用Python自带的HTTP服务

文章目录 1. 前言2. 本地文件服务器搭建2.1 python的安装和设置2.2 cpolar的安装和注册 3. 本地文件服务器的发布3.1 Cpolar云端设置3.2 Cpolar本地设置 4. 公网访问测试5. 结语 1. 前言 数据共享作为和连接作为互联网的基础应用&#xff0c;不仅在商业和办公场景有广泛的应用…

仿`gRPC`功能实现像调用本地方法一样调用其他服务器方法

文章目录 仿gRPC功能实现像调用本地方法一样调用其他服务器方法 简介单体架构微服务架构RPCgPRC gRPC交互逻辑服务端逻辑客户端逻辑示例图 原生实现仿gRPC框架编写客户端方法编写服务端方法综合演示 仿 gRPC功能实现像调用本地方法一样调用其他服务器方法 简介 在介绍gRPC简介…

CDL基础原理

一、CDL简介 CDL&#xff08;全称Change Data Loader&#xff09;是一个基于Kafka Connect框架的实时数据集成服务。 CDL服务能够从各种OLTP数据库中捕获数据库的Data Change事件&#xff0c;并推送到kafka&#xff0c;再由sink connector推送到大数据生态系统中。 CDL目前支…

【位运算】leetcode面试题:消失的两个数字

一.题目描述 消失的两个数字 二.思路分析 本题难度标签是困难&#xff0c;但实际上有了只出现一次的数字iii这道题的铺垫&#xff0c;本题的思路还是很容易想到的。 温馨提示&#xff1a;阅读本文前可以先查看我的【位运算】专栏的第一篇文章&#xff0c;其中包含位运算这类…

如何使用CSS实现一个响应式图片幻灯片(Responsive Image Slider)效果?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 响应式图片幻灯片⭐ HTML结构⭐ CSS样式⭐ JavaScript交互⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个…

视频垂直镜像播放,为您的影片带来新鲜感

大家好&#xff01;在制作视频时&#xff0c;我们常常希望能够给观众带来一些新鲜感和独特的视觉效果。而垂直镜像播放是一个能够让您的影片与众不同的技巧。然而&#xff0c;传统的视频剪辑软件往往无法直接实现视频的垂直镜像播放&#xff0c;给我们带来了一些困扰。现在&…

【算法竞赛宝典】语言之争

【算法竞赛宝典】语言之争 题目描述代码展示 题目描述 代码展示 //语言之争 #include<fstream> #include<string>using namespace std;ifstream cin("language.in"); ofstream cout("language.out");string a; int n;int main() {int i;bool …

短信验证码服务

使用的是 阿里云 阿里云官网 1.找到 左上角侧边栏 -云通信 -短信服务 2.在快速学习测试处 &#xff0c;按照步骤完成快速学习&#xff0c;绑定要测试的手机号&#xff0c;选专用 【测试模板】&#xff0c;自定义模板需要人工审核&#xff0c;要一个工作日 3.右上角 获取 Acces…

动手学深度学习(四)多层感知机

经过了多层感知机后&#xff0c;相当于将原始的特征转化成了新的特征&#xff0c;或者说提炼出更合适的特征&#xff0c;这就是隐藏层的作用。 from&#xff1a;清晰理解多层感知机和反向传播 - 知乎 一、多层感知机的从零开始实现 import torch from torch import nn from d2…

微信小程序左上角home图标的解决方法之一 层级混乱导致的home图标显示的问题 自定义左上角左侧图标的返回路径

这个项目的编辑页在tabbar上 导致跳到tabbar得使用wx.switchTab 保存后返回原来的页面就出现了左上角的home图标 本来想通过自定义home图标的跳转路径来解决这个问题 没想到居然找不到相关内容 有清楚的朋友麻烦给我留个言不胜感激 那我写一下我的骚操作 app.js globalData: {…