Approaching (Almost) Any Machine Learning Problem中译版

前言

  • Abhishek Thakur,很多kaggler对他都非常熟悉,2017年,他在 Linkedin 发表了一篇名为Approaching (Almost) Any Machine Learning Problem的文章,介绍他建立的一个自动的机器学习框架,几乎可以解决任何机器学习问题,这篇文章曾火遍 Kaggle。
  • Abhishek在Kaggle上的成就:
    • Competitions Grandmaster(17枚金牌,世界排名第3)
    • Kernels Expert (Kagglers排名前1%)
    • Discussion Grandmaster(65枚金牌,世界排名第2)
  • 目前,Abhishek在挪威boost公司担任首席数据科学家的职位,这是一家专门从事会话人工智能的软件公司。
  • 本文对Approaching (Almost) Any Machine Learning Problem进行了中文翻译,由于本人水平有限,且未使用机器翻译,可能有部分言语不通顺或本土化程度不足,也请大家在阅读过程中多提供宝贵意见。
  • 因为有几章内容太过基础,所以未进行翻译,详细情况请参照书籍目录:
    • 准备环境(未翻译)
    • 无监督和有监督学习(未翻译)
    • 交叉检验(已翻译)
    • 评估指标(已翻译)
    • 组织机器学习(已翻译)
    • 处理分类变量(已翻译)
    • 特征工程(已翻译)
    • 特征选择(已翻译)
    • 超参数优化(已翻译)
    • 图像分类和分割方法(未翻译)
    • 文本分类或回归方法(未翻译)
    • 组合和堆叠方法(未翻译)
    • 可重复代码和模型方法(未翻译)
  • 我将会把翻译后markdown文件放在Github上,供大家免费下载,若在阅读过程中发现错误,也欢迎大家提出issue或者PR协助我修改。AAAML-CN。
  • 如果后续大家有需要可能会继续翻译未翻译的章节,如果对大家有帮助的话,请帮忙点个star,或者关注。
  • 下面我展示一下交叉检验章节的翻译内容

交叉检验

在上一章中,我们没有建立任何模型。原因很简单,在创建任何一种机器学习模型之前,我们必须知道什么是交叉检验,以及如何根据数据集选择最佳交叉检验数据集。

那么,什么是交叉检验,我们为什么要关注它?

关于什么是交叉检验,我们可以找到多种定义。我的定义只有一句话:交叉检验是构建机器学习模型过程中的一个步骤,它可以帮助我们确保模型准确拟合数据,同时确保我们不会过拟合。但这又引出了另一个词:过拟合

要解释过拟合,我认为最好先看一个数据集。有一个相当有名的红酒质量数据集(red wine quality dataset)。这个数据集有11个不同的特征,这些特征决定了红酒的质量。

这些属性包括:

  • 固定酸度(fixed acidity)
  • 挥发性酸度(volatile acidity)
  • 柠檬酸(citric acid)
  • 残留糖(residual sugar)
  • 氯化物(chlorides)
  • 游离二氧化硫(free sulfur dioxide)
  • 二氧化硫总量(total sulfur dioxide)
  • 密度(density)
  • PH值(pH)
  • 硫酸盐(sulphates)
  • 酒精(alcohol)

根据这些不同特征,我们需要预测红葡萄酒的质量,质量值介于0到10之间。

让我们看看这些数据是怎样的。

import pandas as pd
df = pd.read_csv("winequality-red.csv")

请添加图片描述

图 1:红葡萄酒质量数据集简单展示

我们可以将这个问题视为分类问题,也可以视为回归问题。为了简单起见,我们选择分类。然而,这个数据集值包含6种质量值。因此,我们将所有质量值映射到0到5之间。

quality_mapping = {3: 0,4: 1,5: 2,6: 3,7: 4,8: 5
}
df.loc[:, "quality"] = df.quality.map(quality_mapping)

当我们看大这些数据并将其视为一个分类问题时,我们脑海中会浮现出很多可以应用的算法,也许,我们可以使用神经网络。但是,如果我们从一开始就深入研究神经网络,那就有点牵强了。所以,让我们从简单的、我们也能可视化的东西开始:决策树。

在开始了解什么是过拟合之前,我们先将数据分为两部分。这个数据集有1599个样本。我们保留1000个样本用于训练,599个样本作为一个单独的集合。

以下代码可以轻松完成划分:

df = df.sample(frac=1).reset_index(drop=True)df_train = df.head(1000)
df_test = df.tail(599)

现在,我们将在训练集上使用scikit-learn训练一个决策树模型。

from sklearn import tree 
from sklearn import metricsclf = tree.DecisionTreeClassifier(max_depth=3) cols = ['fixed acidity','volatile acidity','citric acid','residual sugar','chlorides','free sulfur dioxide','total sulfur dioxide','density','pH','sulphates','alcohol']clf.fit(df_train[cols], df_train.quality)

请注意,我将决策树分类器的最大深度(max_depth)设为3。该模型的所有其他参数均保持默认值。现在,我们在训练集和测试集上测试该模型的准确性:

train_predictions = clf.predict(df_train[cols])test_predictions = clf.predict(df_test[cols])train_accuracy = metrics.accuracy_score(df_train.quality, train_predictions
)test_accuracy = metrics.accuracy_score(df_test.quality, test_predictions
)

训练和测试的准确率分别为58.9%和54.25%。现在,我们将最大深度(max_depth)增加到7,并重复上述过程。这样,训练准确率为76.6%,测试准确率为57.3%。在这里,我们使用准确率,主要是因为它是最直接的指标。对于这个问题来说,它可能不是最好的指标。我们可以根据最大深度(max_depth)的不同值来计算这些准确率,并绘制曲线图。

from sklearn import tree
from sklearn import metrics 
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
matplotlib.rc('xtick', labelsize=20)
matplotlib.rc('ytick', labelsize=20)
%matplotlib inline
train_accuracies = [0.5]
test_accuracies = [0.5]
for depth in range(1, 25):clf = tree.DecisionTreeClassifier(max_depth=depth)cols = ['fixed acidity','volatile acidity','citric acid','residual sugar','chlorides','free sulfur dioxide','total sulfur dioxide','density','pH','sulphates','alcohol']clf.fit(df_train[cols], df_train.quality)train_predictions = clf.predict(df_train[cols]) test_predictions = clf.predict(df_test[cols])train_accuracy = metrics.accuracy_score(df_train.quality, train_predictions)test_accuracy = metrics.accuracy_score(df_test.quality, test_predictions)train_accuracies.append(train_accuracy)test_accuracies.append(test_accuracy)plt.figure(figsize=(10, 5)) 
sns.set_style("whitegrid")
plt.plot(train_accuracies, label="train accuracy")
plt.plot(test_accuracies, label="test accuracy")
plt.legend(loc="upper left", prop={'size': 15})
plt.xticks(range(0, 26, 5))
plt.xlabel("max_depth", size=20)
plt.ylabel("accuracy", size=20)
plt.show()

这将生成如图 2 所示的曲线图。
请添加图片描述

图 2:不同 max_depth 训练和测试准确率。

我们可以看到,当最大深度(max_depth)的值为14时,测试数据的得分最高。随着我们不断增加这个参数的值,测试准确率会保持不变或变差,但训练准确率会不断提高。这说明,随着最大深度(max_depth)的增加,决策树模型对训练数据的学习效果越来越好,但测试数据的性能却丝毫没有提高。

这就是所谓的过拟合

模型在训练集上完全拟合,而在测试集上却表现不佳。这意味着模型可以很好地学习训练数据,但无法泛化到未见过的样本上。在上面的数据集中,我们可以建立一个最大深度(max_depth)非常高的模型,它在训练数据上会有出色的结果,但这种模型并不实用,因为它在真实世界的样本或实时数据上不会提供类似的结果。

有人可能会说,这种方法并没有过拟合,因为测试集的准确率基本保持不变。过拟合的另一个定义是,当我们不断提高训练损失时,测试损失也在增加。这种情况在神经网络中非常常见。

每当我们训练一个神经网络时,都必须在训练期间监控训练集和测试集的损失。如果我们有一个非常大的网络来处理一个非常小的数据集(即样本数非常少),我们就会观察到,随着我们不断训练,训练集和测试集的损失都会减少。但是,在某个时刻,测试损失会达到最小值,之后,即使训练损失进一步减少,测试损失也会开始增加。我们必须在验证损失达到最小值时停止训练。

这是对过拟合最常见的解释

奥卡姆剃刀用简单的话说,就是不要试图把可以用简单得多的方法解决的事情复杂化。换句话说,最简单的解决方案就是最具通用性的解决方案。一般来说,只要你的模型不符合奥卡姆剃刀原则,就很可能是过拟合。

请添加图片描述

图 3:过拟合的最一般定义

现在我们可以回到交叉检验。

在解释过拟合时,我决定将数据分为两部分。我在其中一部分上训练模型,然后在另一部分上检查其性能。这也是交叉检验的一种,通常被称为 “暂留集”(hold-out set)。当我们拥有大量数据,而模型推理是一个耗时的过程时,我们就会使用这种(交叉)验证。

交叉检验有许多不同的方法,它是建立一个良好的机器学习模型的最关键步骤。选择正确的交叉检验取决于所处理的数据集,在一个数据集上适用的交叉检验也可能不适用于其他数据集。不过,有几种类型的交叉检验技术最为流行和广泛使用。

其中包括:

  • k折交叉检验
  • 分层k折交叉检验
  • 暂留交叉检验
  • 留一交叉检验
  • 分组k折交叉检验

交叉检验是将训练数据分层几个部分,我们在其中一部分上训练模型,然后在其余部分上进行测试。请看图4。
请添加图片描述

图 4:将数据集拆分为训练集和验证集

图 4 和图 5 说明,当你得到一个数据集来构建机器学习模型时,你会把它们分成两个不同的集:训练集和验证集。很多人还会将其分成第三组,称之为测试集。不过,我们将只使用两个集。如你所见,我们将样本和与之相关的目标进行了划分。我们可以将数据分为 k 个互不关联的不同集合。这就是所谓的 k 折交叉检验
请添加图片描述

图 5:K 折交叉检验

我们可以使用scikit-learn中的KFold将任何数据分割成k个相等的部分。每个样本分配一个从0到k-1的值。

import pandas as pd
from sklearn import model_selectionif __name__ == "__main__":df = pd.read_csv("train.csv")df["kfold"] = -1df = df.sample(frac=1).reset_index(drop=True)kf = model_selection.KFold(n_splits=5)for fold, (trn_, val_) in enumerate(kf.split(X=df)): df.loc[val_, 'kfold'] = folddf.to_csv("train_folds.csv", index=False)

几乎所有类型的数据集都可以使用此流程。例如,当数据图像时,您可以创建一个包含图像 ID、图像位置和图像标签的 CSV,然后使用上述流程。

另一种重要的交叉检验类型是分层k折交叉检验。如果你有一个偏斜的二元分类数据集,其中正样本占 90%,负样本只占 10%,那么你就不应该使用随机 k 折交叉。对这样的数据集使用简单的k折交叉检验可能会导致折叠样本全部为负样本。在这种情况下,我们更倾向于使用分层 k 折交叉检验。分层 k 折交叉检验可以保持每个折中标签的比例不变。因此,在每个折叠中,都会有相同的 90% 正样本和 10% 负样本。因此,无论您选择什么指标进行评估,都会在所有折叠中得到相似的结果。

修改创建 k 折交叉检验的代码以创建分层 k 折交叉检验也很容易。我们只需将 model_selection.KFold更改为 model_selection.StratifiedKFold ,并在 kf.split(…) 函数中指定要分层的目标列。我们假设 CSV 数据集有一列名为 “target” ,并且是一个分类问题。

import pandas as pd
from sklearn import model_selection 
if __name__ == "__main__":df = pd.read_csv("train.csv")df["kfold"] = -1df = df.sample(frac=1).reset_index(drop=True)y = df.target.valueskf = model_selection.StratifiedKFold(n_splits=5)for f, (t_, v_) in enumerate(kf.split(X=df, y=y)): df.loc[v_, 'kfold'] = fdf.to_csv("train_folds.csv", index=False)

对于葡萄酒数据集,我们来看看标签的分布情况。

b = sns.countplot(x='quality', data=df)
b.set_xlabel("quality", fontsize=20) 
b.set_ylabel("count", fontsize=20)

请注意,我们继续上面的代码。因此,我们已经转换了目标值。从图 6 中我们可以看出,质量偏差很大。有些类别有很多样本,有些则没有那么多。如果我们进行简单的k折交叉检验,那么每个折叠中的目标值分布都不会相同。因此,在这种情况下,我们选择分层 k 折交叉检验。
请添加图片描述

图 6:葡萄酒数据集中 "质量" 分布情况

规则很简单,如果是标准分类问题,就盲目选择分层k折交叉检验。

但如果数据量很大,该怎么办呢?假设我们有 100 万个样本。5 倍交叉检验意味着在 800k 个样本上进行训练,在 200k 个样本上进行验证。根据我们选择的算法,对于这样规模的数据集来说,训练甚至验证都可能非常昂贵。在这种情况下,我们可以选择暂留交叉检验

创建保持结果的过程与分层 k 折交叉检验相同。对于拥有 100 万个样本的数据集,我们可以创建 10 个折叠而不是 5 个,并保留其中一个折叠作为保留样本。这意味着,我们将有 10 万个样本被保留下来,我们将始终在这个样本集上计算损失、准确率和其他指标,并在 90 万个样本上进行训练。

在处理时间序列数据时,暂留交叉检验也非常常用。假设我们要解决的问题是预测一家商店 2020 年的销售额,而我们得到的是 2015-2019 年的所有数据。在这种情况下,你可以选择 2019 年的所有数据作为保留数据,然后在 2015 年至 2018 年的所有数据上训练你的模型。
请添加图片描述

图 7:时间序列数据示例

在图 7 所示的示例中,假设我们的任务是预测从时间步骤 31 到 40 的销售额。我们可以保留 21 至 30 步的数据,然后从 0 步到 20 步训练模型。需要注意的是,在预测 31 步至 40 步时,应将 21 步至 30 步的数据纳入模型,否则,模型的性能将大打折扣。

在很多情况下,我们必须处理小型数据集,而创建大型验证集意味着模型学习会丢失大量数据。在这种情况下,我们可以选择留一交叉检验,相当于特殊的 k 则交叉检验其中 k=N ,N 是数据集中的样本数。这意味着在所有的训练折叠中,我们将对除 1 之外的所有数据样本进行训练。这种类型的交叉检验的折叠数与数据集中的样本数相同。

需要注意的是,如果模型的速度不够快,这种类型的交叉检验可能会耗费大量时间,但由于这种交叉检验只适用于小型数据集,因此并不重要。

现在我们可以转向回归问题了。回归问题的好处在于,除了分层 k 折交叉检验之外,我们可以在回归问题上使用上述所有交叉检验技术。也就是说,我们不能直接使用分层 k 折交叉检验,但有一些方法可以稍稍改变问题,从而在回归问题中使用分层 k 折交叉检验。大多数情况下,简单的 k 折交叉检验适用于任何回归问题。但是,如果发现目标分布不一致,就可以使用分层 k 折交叉检验。

要在回归问题中使用分层 k 折交叉检验,我们必须先将目标划分为若干个分层,然后再以处理分类问题的相同方式使用分层 k 折交叉检验。选择合适的分层数有几种选择。如果样本量很大(> 10k,> 100k),那么就不需要考虑分层的数量。只需将数据分为 10 或 20层即可。如果样本数不多,则可以使用 Sturge’s Rule 这样的简单规则来计算适当的分层数。

Sturge’s Rule:
N u m b e r o f B i n s = 1 + l o g 2 ( N ) Number of Bins = 1 + log_2(N) NumberofBins=1+log2(N)
其中 N N N 是数据集中的样本数。该函数如图8所示。
请添加图片描述

图 8:利用斯特格法则绘制样本与箱数对比图

让我们制作一个回归数据集样本,并尝试应用分层 k 折交叉检验,如下面的 python 代码段所示。

import numpy as np
import pandas as pd
from sklearn import datasets
from sklearn import model_selectiondef create_folds(data):data["kfold"] = -1data = data.sample(frac=1).reset_index(drop=True)num_bins = int(np.floor(1 + np.log2(len(data)))) data.loc[:, "bins"] = pd.cut(data["target"], bins=num_bins, labels=False )kf = model_selection.StratifiedKFold(n_splits=5)for f, (t_, v_) in enumerate(kf.split(X=data, y=data.bins.values)): data.loc[v_, 'kfold'] = fdata = data.drop("bins", axis=1) return dataif __name__ == "__main__":X, y = datasets.make_regression(n_samples=15000, n_features=100, n_targets=1 )
df = pd.DataFrame(X,columns=[f"f_{i}" for i in range(X.shape[1])] 
)
df.loc[:, "target"] = y 
df = create_folds(df)

交叉检验是构建机器学习模型的第一步,也是最基本的一步。如果要做特征工程,首先要拆分数据。如果要建立模型,首先要拆分数据。如果你有一个好的交叉检验方案,其中验证数据能够代表训练数据和真实世界的数据,那么你就能建立一个具有高度通用性的好的机器学习模型。

本章介绍的交叉检验类型几乎适用于所有机器学习问题。不过,你必须记住,交叉检验也在很大程度上取决于数据,你可能需要根据你的问题和数据采用新的交叉检验形式。

例如,假设我们有一个问题,希望建立一个模型,从患者的皮肤图像中检测出皮肤癌。我们的任务是建立一个二元分类器,该分类器接收输入图像并预测其良性或恶性的概率。

在这类数据集中,训练数据集中可能有同一患者的多张图像。因此,要在这里建立一个良好的交叉检验系统,必须有分层的 k 折交叉检验,但也必须确保训练数据中的患者不会出现在验证数据中。幸运的是,scikit-learn 提供了一种称为 GroupKFold 的交叉检验类型。 在这里,患者可以被视为组。 但遗憾的是,scikit-learn 无法将 GroupKFold 与 StratifiedKFold 结合起来。所以你需要自己动手。我把它作为一个练习留给读者的练习。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/116381.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JY901B智能9轴加速度计陀螺仪角度传感器

今日学习使用JY901B智能9轴加速度计陀螺仪角度传感器 本文会先使用上位机获取数据作演示,后介绍它的数据表发送原理。 文章提供详细的原理讲解,测试工程下载,代码讲解,本人有多注释的习惯,希望对大家有帮助。 我的J…

【LeetCode】剑指 Offer <二刷>(4)

目录 题目:剑指 Offer 09. 用两个栈实现队列 - 力扣(LeetCode) 题目的接口: 解题思路: 代码: 过啦!!! 题目:剑指 Offer 10- I. 斐波那契数列 - 力扣&am…

FFmpeg5.0源码阅读——FFmpeg大体框架

摘要:前一段时间熟悉了下FFmpeg主流程源码实现,对FFmpeg的整体框架有了个大概的认识,因此在此做一个笔记,希望以比较容易理解的文字描述FFmpeg本身的结构,加深对FFmpeg的框架进行梳理加深理解,如果文章中有…

Linux 常见命令操作

一、目录管理 1.1 列出目录 ls # ls 命令 # -a 参数,查看全部的文件,包括隐藏的文件 # -l 参数,列出所有的文件,包括文件的属性和权限,不显示隐藏文件 [rootlocalhost /]# ls bin boot dev etc home lib lib64…

C# Dapper 操作Oracle数据库

nuget安装内容 1.配置连接字符串 OracleConnectionString这个可用 {"Logging": {"LogLevel": {"Default": "Information","Microsoft.AspNetCore": "Warning"}},"AllowedHosts": "*","…

前几天写的博客被选中进入【CSDN月度精选】榜单

小收获,记录一下,哈哈 这个貌似是CSDN给的排名和得分:

中东 Shopify 如何使用 Bytebase 构建一站式数据库开发工作流

公司简介 Salla 是一家 2016 年成立,位于沙特麦加的自建站电商平台。 作为中东 Shopify,其最大的特点是支持阿拉伯语建站,并且提供更多适应中东地区特点的本地化服务。截止目前,已有 47,000 家店铺入驻 Salla,商品销售…

云计算环境中高性能计算的挑战与对策

文章目录 云计算中的高性能计算挑战1. 资源竞争:2. 网络延迟:3. 数据传输效率:4. 虚拟化开销:5. 节点异构性: 高性能计算在云计算环境中的对策1. 定制化虚拟机镜像:2. 弹性资源调整:3. 高效数据…

springCloud整合Zookeeper的时候调用找不到服务

SpringCloud整合Zookeeper的时候调用找不到服务 首先,我们在注册中心注册了这个服务: 然后我们使用RestTemplate 调用的时候发现失败了:找不到这个服务: 找了很多资料发现这个必须要加上负载才行 BeanLoadBalanced //负载publi…

_数字矩阵

题目&#xff1a;一个3阶的数字矩阵如下&#xff1a; 1 2 3 8 9 4 7 6 5 现在给定数字n(1<n≤20)&#xff0c;输出n阶数字矩阵。 思路&#xff1a; 放出一条好玩的贪吃蛇&#xff0c;按照右下左上的顺序吃蛋糕&#xff0c;一边吃蛋糕&#xff0c;一边拉数字&#xff1b…

高级IO(select、poll、epoll)

在介绍本文之前&#xff0c;先提出一个问题 什么是IO&#xff1f; 等数据拷贝 1.等 - IO事件就绪&#xff08;检测功能成分&#xff09; 2.数据拷贝 高效的IO就是&#xff1a;单位时间&#xff0c;等的比重越小&#xff0c;IO的效率越高 五种IO模型 IO模型&#xff1a; 阻塞式…

微服务通信[HTTP|RPC同步通信、MQ异步通信]

概念 A服务调用B服务,B服务调C服务,C服务调D服务,即微服务之间的通信(也可以叫微服务之间的调用) HTTP同步通信 一种轻量级的通信协议,常用于在不同的微服务之间进行通信,也是最简单的通信方式使用REST ful为开发规范&#xff0c;将服务对外暴露的HTTP调用方式为REST API(如GET…

ChatGPT 实现动态地图可视化展示

地图可视化分析有许多优点和好处: 1.直观理解:地图可视化使得复杂的数据更易于理解。通过地图可视化,人们可以直观地看到地理位置、地区之间的关系以及空间分布的模式。 2.提高决策效率:地图可视化可以帮助决策者快速理解和解释数据,从而提高决策效率。 3.高效的数据整…

Redis 哨兵(sentinel)

1. 是什么一 1.1 吹哨人巡查监控后台master主机是否故障&#xff0c;如果故障了根据投票数自动将某一个从库转换为新主库&#xff0c;继续对外服务 1.2 作用 俗称&#xff0c;无人值守运维 哨兵的作用&#xff1a; 1、监控redis运行状态&#xff0c;包括master和slave 2、当m…

leetcode 1326. Minimum Number of Taps to Open to Water a Garden

x轴上的花园范围为[0,n], 0~n这个n1个离散点上有水龙头&#xff0c;第 i 个水龙头能浇水的范围为[i-ranges[i], iranges[i]]. 求能浇整个花园的最小水龙头个数。 思路&#xff1a; 方法一&#xff1a; greedy 先把每个水龙头能浇的区间准备好&#xff0c; 用一个数组保存所有…

C盘扩容遇到的问题(BitLocker解密、)

120G的C盘不知不觉的就满了&#xff0c;忍了好久终于要动手了。 尽管电脑-管理--磁盘管理里可以进行磁盘大小调整&#xff0c;但由于各盘都在用&#xff0c;不能够连续调整&#xff0c;所以选用DiskGenius。 # DiskGenius调整分区大小遇到“您选择的分区不支持无损调整容量” …

stable diffusion实践操作-提示词

系列文章目录 stable diffusion实践操作 文章目录 系列文章目录前言一、提示词是什么&#xff1f;1.1、提示词的原理 二、使用步骤2.1 核心原则2.2、提示词分类2.2.1 正向提示词2.2.2 反向提示词 2.3、提示词书写模板2.3.1 画质&#xff1a;2.3.2. 主体结构2.3.3. 主体细节2.3…

Ubuntu 20.04 Server配置网络

0&#xff0c;环境 服务器&#xff1a; Intel(R) Xeon(R) Gold 6248R CPU 3.00GHz 96核 网卡&#xff1a; 多网卡 1&#xff0c; 镜像下载 http://old-releases.ubuntu.com/releases/ubuntu-20.04.1-desktop-amd64.iso 2&#xff0c; 系统安装--具体步骤就不贴出来&#…

Python基础之基础语法(二)

Python基础之基础语法(二) 语言类型 静态语言 如&#xff1a;C C Java ina a 100 a 100 a abc # 不可以静态语言需要指定声明标识符的类型&#xff0c;之后不可以改变类型赋值。静态语言变异的时候要检查类型&#xff0c;编写源代码&#xff0c;编译时检查错误。 动态语…

2018ECCV Can 3D Pose be Learned from2D Projections Alone?

摘要 在计算机视觉中&#xff0c;从单个图像的三维姿态估计是一个具有挑战性的任务。我们提出了一种弱监督的方法来估计3D姿态点&#xff0c;仅给出2D姿态地标。我们的方法不需要2D和3D点之间的对应关系来建立明确的3D先验。我们利用一个对抗性的框架&#xff0c;强加在3D结构…