volatile 关键字 与 CPU cache line 的效率问题

分析&回答

Cache Line可以简单的理解为CPU Cache中的最小缓存单位。目前主流的CPU Cache的Cache Line大小都是64Bytes。假设我们有一个512字节的一级缓存,那么按照64B的缓存单位大小来算,这个一级缓存所能存放的缓存个数就是512/64 = 8个。具体参见下图:

代码示例:

public class CacheLine {private static class T {public volatile long x = 0L;//long类型占据8个字节}public static T[]  arr = new T[2];static {arr[0] = new T();arr[1] = new T();//两个数组紧挨着保证在内存中也是挨在一起的}public static void main(String[] args) throws Exception{Thread t1 = new Thread(() -> {for (long i = 0; i<10000000L; i++) {arr[0].x = i;//修改一千万次}});Thread t2 = new Thread(() -> {for (long i = 0; i<10000000L; i++) {arr[1].x = i;//修改一千万次}});final long start = System.currentTimeMillis();t1.start();t2.start();t1.join();//让t1线程先执行完t2.join();//让t2线程执行完System.out.println(System.currentTimeMillis() - start);//join 保证主线程的这段代码最后执行}
}
复制代码

执行结果为 300ms左右
上面代码中 arr[0] 和 arr[1]会在同一个cache line中,而每个cache line 是cpu 读入的最基本单位,在我们使用vaolatile 之后线程t1对x的1000000万次修改都要刷新内存通知t2,而同样t2对x的修改也要告诉t1。这样就会存在频繁的cache line 和内存的刷新读取。
如果我们将 对x的修饰的valitile去掉执行结果为10ms左右\

使用缓存行对其的方式代码示例:

public class CacheLine {private static class parent {public volatile long p1,p2,p3,p4,p5,p6,p7;//创建七个long 基本数据类型的成员变量占据56个字节}private static class T extends parent{public volatile  long x = 0L;//long类型占据8个字节}public static T[]  arr = new T[2];static {arr[0] = new T();arr[1] = new T();//两个数组紧挨着保证在内存中也是挨在一起的}public static void main(String[] args) throws Exception{Thread t1 = new Thread(() -> {for (long i = 0; i<10000000L; i++) {arr[0].x = i;//修改一千万次}});Thread t2 = new Thread(() -> {for (long i = 0; i<10000000L; i++) {arr[1].x = i;//修改一千万次}});final long start = System.currentTimeMillis();t1.start();t2.start();t1.join();//让t1线程先执行完t2.join();//让t2线程执行完System.out.println(System.currentTimeMillis() - start);//join 保证主线程的这段代码最后执行}
}
复制代码

执行结果为 100ms左右
现成t1一次读入x 包括p1p2p3p4p5p6p7的所有变量64个字节刚好占据一个缓存行,线程t2 也是如此,所以他们对变量x的修改都不用刷新内存通知对方提高了性能。
为什么这里不包括对象头的那部分呢,因为对相头不是使用的部分,不会读入缓存,我们用到的只是成员变量
总结为cpu对于内存的读入到缓存的数据是按照缓存行的大小(64k)来读取的。

反思&扩展

cache 是为了进一步提升计算机性能引入的存储结构,cache和内存的最小的传输单位是cache line,因为每个物理core有自己独享的L1、L2 cache,并且一个cache line可能存在多个cache中,所以就出现了MESI协议保证cache line的一致性。 进而又引入了cache line的伪共享的问题,为了进一步降低cache line伪共享所带来的的消耗,我们应该尽量避免多个线程同时修改的不同变量在同一个cache line中。虽然真实业务场景中,cache line的消耗占比可能会被弱化很多,但是追求极致的程序猿们,又怎么能放过这样一个无意义的消耗呢!

喵呜面试助手:一站式解决面试问题,你可以搜索微信小程序 [喵呜面试助手] 或关注 [喵呜刷题] -> 面试助手 免费刷题。如有好的面试知识或技巧期待您的共享!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/116411.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

jmeter单接口和多接口测试

最近接触到了多接口串联&#xff0c;接口串联的技术会在其他帖子有说明&#xff0c;其核心技术点就是通过正则表达式和变量来实现接口的关联。目前为止呢笔者用到的地方还只有一个&#xff0c;就是关于session保持的时候。但是看到很多资料都说测试过程中经常遇到b接口需要用a接…

微信小程序地图应用总结版

1.应用场景&#xff1a;展示公司位置&#xff0c;并打开第三方app&#xff08;高德&#xff0c;腾讯&#xff09;导航到目标位置。 &#xff08;1&#xff09;展示位置地图 uniapp官网提供了相关组件&#xff0c;uniapp-map组件 具体用法&#xff1a; html结构 <map sty…

Docker 容器学习笔记

Docker 容器学习笔记 容器的由来 早先&#xff0c;虚拟机通过操作系统实现相互隔离&#xff0c;保证应用程序在运行时相互独立&#xff0c;避免相互干扰。但是操作系统又笨又重&#xff0c;耗费资源严重&#xff1a; 容器技术只隔离应用程序的运行时环境但容器之间共享同一个…

【git】从一个git仓库迁移到另外一个git仓库

在远端服务器创建一个新的仓库 用界面创建&#xff0c;当然也可以用命令创建 拉去源仓库 git clone --bare git192.168.10.10:java/common.gitgit clone --bare <旧仓库地址>拉去成功以后会出现 进入到文件夹内部 出现下面信息&#xff1a; 推送到新的远端仓库 git …

Java从入门到精通-流程控制(一)

流程控制 1.复合语句 复合语句&#xff0c;也称为代码块&#xff0c;是一组Java语句&#xff0c;用大括号 {} 括起来&#xff0c;它们可以被视为单个语句。复合语句通常用于以下情况&#xff1a; - 在控制结构&#xff08;如条件语句和循环&#xff09;中包含多个语句。 - …

ROS机器人编程---------(二)ROS中的核心概念

ROS机器人编程 ROS中的核心概念 ROS的通信机制 在ROS中结点是最小单元&#xff0c;比如说机器人的遥控器可以作为一个控制结点&#xff0c;机器人上的摄像头也可以看作一个结点&#xff0c;ROS通过协调各个结点来实现 在启动任何ROS结点之前&#xff0c;都必须先启动ROS Mas…

Upload-labs 1~15 通关详细教程

文章目录 Upload-labs 1~15 通关详细教程Pass-01-前端js验证Pass-02-后端MIME验证Pass-03-黑名单验证Pass-04-黑名单验证.htaccessPass-05-文件后缀名大小写绕过Pass-06-文件后缀名空格绕过Pass-07-文件后缀名点绕过Pass-08-文件后缀名::$DATA绕过Pass-09-点空格点空格绕过Pass…

【小沐学Unity3d】3ds Max 骨骼动画制作(CAT、Character Studio、Biped、骨骼对象)

文章目录 1、简介2、 CAT2.1 加载 CATRig 预设库2.2 从头开始创建 CATRig 3、character studio3.1 基本描述3.2 Biped3.3 Physique 4、骨骼系统4.1 创建方法4.2 简单示例 结语 1、简介 官网地址&#xff1a; https://help.autodesk.com/view/3DSMAX/2018/CHS https://help.aut…

R语言nlme、nlmer、lme4用(非)线性混合模型non-linear mixed model分析藻类数据实例...

原文链接&#xff1a;http://tecdat.cn/?p23426 混合线性模型&#xff0c;又名多层线性模型(Hierarchical linear model)。它比较适合处理嵌套设计(nested)的实验和调查研究数据&#xff08;点击文末“阅读原文”获取完整代码数据&#xff09;。 相关视频 序言 此外&#xff0…

使用Python进行Base64编码和解码

假设您有一个想要通过网络传输的二进制图像文件。您很惊讶对方没有正确接收该文件 - 该文件只是包含奇怪的字符&#xff01; 嗯&#xff0c;您似乎试图以原始位和字节格式发送文件&#xff0c;而所使用的媒体是为流文本而设计的。 避免此类问题的解决方法是什么&#xff1f;答…

【Vue3】组件递归

【Vue3】组件递归 实现效果 通过传入一个数字&#xff0c;实现数字次循环 父组件 <script setup> import { ref } from "vue"; import RecursionMe from "./components/RecursionMe/index.vue";const level ref(0);const add () > level.val…

接口自动化测试 —— JMeter断言基本使用

断言 断言&#xff1a;就是让程序判断预期结果和实际结果是否一致 注意&#xff1a;请求发起成功了&#xff0c;不代表着一定符合预期的结果。 JMeter中常用断言 响应断言 JSON断言 持续时间断言 响应断言 步骤&#xff1a;&#xff1a;线程组——HTTP取样器——断言——…

解决springboot项目中的groupId、package或路径的混淆问题

对于像我一样喜欢跳跃着学习的聪明人来说&#xff0c;肯定要学springboot&#xff0c;什么sevlet、maven、java基础&#xff0c;都太老土了&#xff0c;用不到就不学。所以古代的聪明人有句话叫“书到用时方恨少”&#xff0c;测试开源项目时&#xff0c;编译总是报错&#xff…

Linux-Centos7安装Docker

文章目录 一、前言二、Docker安装1、Docker及系统版本2、Docker的自动化安装3、Docker手动安装3.1、卸载Docker&#xff08;可选&#xff09;3.2、设置源仓库3.3、Docker安装3.4、Docker启动3.5、验证是否安装成功3.5.1、拉取镜像3.5.2、查看镜像3.5.3、运行镜像 3.6、删除Dock…

http和https的区别?

什么是 HTTP&#xff1f; HTTP是一种互联网数据传输协议&#xff0c;用于在网络服务器和客户端之间进行数据传输。作为万维网的基础&#xff0c;HTTP协议允许网络浏览器向网络服务器发送请求&#xff0c;服务器则会返回响应。HTTP协议基于文本&#xff0c;因此传输的数据是人类…

多源最短路径算法:Floyd-Warshall算法分析

文章目录 图的邻接矩阵 一.Floyd-Warshall算法思想(基于动态规划)二.Floyd-Warshall算法接口笔记附录:单源最短路径--Bellman-Ford算法1.Bellman-Ford算法接口核心部分2.Bellman-Ford算法接口 图的邻接矩阵 namespace Graph_Structure {//Vertex是代表顶点的数据类型,Weight是…

Approaching (Almost) Any Machine Learning Problem中译版

前言 Abhishek Thakur&#xff0c;很多kaggler对他都非常熟悉&#xff0c;2017年&#xff0c;他在 Linkedin 发表了一篇名为Approaching (Almost) Any Machine Learning Problem的文章&#xff0c;介绍他建立的一个自动的机器学习框架&#xff0c;几乎可以解决任何机器学习问题…

JY901B智能9轴加速度计陀螺仪角度传感器

今日学习使用JY901B智能9轴加速度计陀螺仪角度传感器 本文会先使用上位机获取数据作演示&#xff0c;后介绍它的数据表发送原理。 文章提供详细的原理讲解&#xff0c;测试工程下载&#xff0c;代码讲解&#xff0c;本人有多注释的习惯&#xff0c;希望对大家有帮助。 我的J…

【LeetCode】剑指 Offer <二刷>(4)

目录 题目&#xff1a;剑指 Offer 09. 用两个栈实现队列 - 力扣&#xff08;LeetCode&#xff09; 题目的接口&#xff1a; 解题思路&#xff1a; 代码&#xff1a; 过啦&#xff01;&#xff01;&#xff01; 题目&#xff1a;剑指 Offer 10- I. 斐波那契数列 - 力扣&am…

FFmpeg5.0源码阅读——FFmpeg大体框架

摘要&#xff1a;前一段时间熟悉了下FFmpeg主流程源码实现&#xff0c;对FFmpeg的整体框架有了个大概的认识&#xff0c;因此在此做一个笔记&#xff0c;希望以比较容易理解的文字描述FFmpeg本身的结构&#xff0c;加深对FFmpeg的框架进行梳理加深理解&#xff0c;如果文章中有…