【数学建模竞赛】各类题型及解题方案

 

评价类赛题建模流程及总结

建模步骤

建立评价指标->评价体系->同向化处理(都越多越好或越少越少)->指标无量纲处理 

->权重-> 主客观->合成

主客观评价问题的区别

主客观概念主要是在指标定权时来划分的。主观评价与客观评价的区别是,主观评价算法在定权时主要以判断者的主观经验为依据,而客观评价则主要基于测量数据的基本特性
来综合定权

定权带有一定的主观性,用不同方法确定的权重分配,可能不尽一致,这将导致权重分配的不确定性,最终可能导致评价结果的不确定性。因而在实际工作中,不论用哪种方法确定权重分配,都应当依赖于较为合理的专业解释。

如何选择合适的评价方法 

 

 

预测类赛题建模流程及总结

预测类赛题的基本解题步骤

预测就是根据过去和现在,估计未来顶测末来。统计预测属于预测方法研究范畴,即如何

利用科学的统计方法对事物的末来发展进行定量推测

基于数学建模的预测方法种类繁多,从经典的单耗法、弹性系数法 、统计分析法,到目前的灰色预测法。当在使用相应的预测方法
建立预测模型时,我们需要知道主要的一些预测方法的研究特点,优缺点和适用范围

 

预测类问题的区别

预测类问题分为两类:

一类是无法用数学语言刻画其内部演化机理的问题;机理分析->微分方程

另一类是可以通过微分方程刻画其内部规律,这类问题我们称为机理建模问题,通过微分方程建模求解。 

如何选择合适的预测方法

在预测类问题的分析中,同样受到预测条件的限制(如数据量的大小、变量之间的关系等)不同的预测方法可能会产生不同的结果,因此需要根据实际情况来选择。 

 

优化类赛题建模流程及总结

优化类赛题的基本解题步骤

优化类问题是从所有可能方案中选择最合理的方案以达到最优目标。在各种科学问题、工程问题 、生产管理、社会经济问题中,人们总是希望在有限的资源条件下,用尽可能小的代价,获得最大的收获(比如保险)。

优化类问题一般的解题步骤为:

1)首先确定决策变量,也就是需要优化的变量;

2)然后确定目标函数,也就是优化的目的;

3) 最后确定约束条件,决策变量在达到最优状态时,受到那些客观限制。

 

部分国赛优化类赛题的解决方案

在08年国赛眼科病床的合理安排问题中,

目标函数为医院病床的利用率最高;

决策变量为服务策略:是先到病人先住院、急诊病人先住院还是占用病床时间短的病人先住院等;

约束条件可能包括病人最长等待时间限制、不同症状之间的病人不同房等;

在10年国赛交巡警服务平台的设置与调度问题中,

决策变量为服务平台的位置坐标;

目标函数为交巡警车到达事发地时间最短、交巡警封锁交通要道肘间最短

约束条件可能包括事故发生后交警最晚到达时间,一定区域内服务平台最低数量要求等。

如何选择合适的优化方法

优化类问题中常用的数学模型和求解算法,其中包括线性规划、非线性规划、整数规划、多目标规划等在模型求解中,对于凸优化模型,可以采用基于梯度的求解算法;对于非凸的优化模型,可以采用智能优化算法。

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/117227.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QUdpSocket Class

继承自 QAbstractSocket 类 QUdpSocket类提供UDP套接字。 UDP(用户数据报协议)是一种轻量级、不可靠、面向数据报、无连接的协议。它可以在可靠性不重要的情况下使用。QUdpSocket是QAbstractSocket的一个子类,它允许您发送和接收UDP数据报。 使用这个类最常见的方法…

一文1800字从0到1使用Python Flask实战构建Web应用

Python Flask是一个轻量级的Web框架,它简单易用、灵活性高,适用于构建各种规模的Web应用。本文将介绍如何使用Python Flask框架来实战构建一个简单的Web应用,并展示其基本功能和特性。 第一部分:搭建开发环境 在开始之前我们需要…

docker部署nginx,部署springboot项目,并实现访问

一、先部署springboot项目 1、安装docker: yum install docker -y 2、启动docker: service docker start 重启: service docker restart 3、查看版本: docker -v 4、使设置docker.service生效(路径:…

游戏思考30(补充版):关于逆水寒铁牢关副本、白石副本和技能的一些注释(2023/0902)

前期介绍 我是一名逆水寒的玩家,做一些游戏的笔记当作攻略记录下来,荣光不朽-帝霸来源视频连接 传送门 一、旧版铁牢关(非逆水寒老兵服) (1)老一:巨鹰 1)机制一:三阵风…

Bert和LSTM:情绪分类中的表现

一、说明 这篇文章的目的是评估和比较 2 种深度学习算法(BERT 和 LSTM)在情感分析中进行二元分类的性能。评估将侧重于两个关键指标:准确性(衡量整体分类性能)和训练时间(评估每种算法的效率)。…

TDesign在按钮上加入图标组件

在实际开发中 我们经常会遇到例如 添加或者查询 我们需要在按钮上加入图标的操作 TDesign自然也有预备这样的操作 首先我们打开文档看到图标 例如 我们先用某些图标 就可以点开下面的代码 可以看到 我们的图标大部分都是直接用tdesign-icons-vue 导入他的组件就可以了 而我…

LabVIEW计算测量路径输出端随机变量的概率分布密度

LabVIEW计算测量路径输出端随机变量的概率分布密度 今天,开发算法和软件来解决计量综合的问题,即为特定问题寻找最佳测量算法。提出了算法支持,以便从计量上综合测量路径并确定所开发测量仪器的测量误差。测量路径由串联的几个块组成&#x…

Flutter启动页

效果图 import dart:async; import package:flutter/cupertino.dart; import package:flutter/material.dart; import jumpPage.dart;class TransitPage extends StatefulWidget {const TransitPage({super.key});overrideState<TransitPage> createState() > _Trans…

【项目 计网8】4.23 TCP状态转换 4.24半关闭、端口复用

文章目录 4.23 TCP状态转换关于三次握手四次挥手 4.24半关闭、端口复用端口复用 4.23 TCP状态转换 2MSL(Maximum Segment Lifetime) 主动断开连接的一方&#xff0c;最后进入一个TIME_WAIT状态&#xff0c;这个状态会持续&#xff1a;2msl msl&#xff1a;官方建议&#xff1a;…

Private market:借助ZK实现的任意计算的trustless交易

1. 引言 Private market&#xff0c;借助zk-SNARKs和以太坊来 隐私且trustlessly selling&#xff1a; 1&#xff09;以太坊地址的私钥&#xff08;ECDSA keypair&#xff09;2&#xff09;EdDSA签名3&#xff09;Groth16 proof&#xff1a;借助递归性来匿名交易Groth16 proo…

NCCoE发布“向后量子密码学迁移”项目进展情况说明书

近日&#xff0c;NIST下属的国家网络安全中心&#xff08;NCCoE&#xff09;发布了一份向后量子密码学迁移&#xff08;Migration to Post-Quantum Cryptography&#xff09;项目情况说明书。该文档简要概述了向后量子密码学迁移项目的背景、目标、挑战、好处和工作流程&#x…

flutter plugins插件【三】【Flutter Intl】

3、 Flutter Intl 多语言国际化 在Android Studio中菜单Tools找到flutter intl创建多语言配置。 创建后会在pubspec.yaml出现 flutter_intl:enabled: true 在工程的lib会生成l10n与generated文件夹 l10n包含 intl_en.arb intl_zn.arb 我们在intl_en.arb添加 { home: &quo…

说说HTTP 和 HTTPS 有什么区别?

分析&回答 http协议 超文本传输协议&#xff0c;是互联网上应用最多的协议&#xff0c;基于TCP/IP通讯协议来传递信息&#xff0c;用于从WWW服务器传输超文本到本地浏览器的传输协议。 https协议 我们可以将其看作是以安全为目标的http协议。在http协议的基础上增加了S…

stm32 iap sd卡升级

参考&#xff1a;STM32F4 IAP 跳转 APP问题_stm32程序跳转_古城码农的博客-CSDN博客 app程序改两个位置 1.程序首地址&#xff1a; 2.改中断向量表位移&#xff0c;偏移量和上面一样就可以 然后编译成bin文件就可以了

K-Means(K-均值)聚类算法理论和实战

目录 K-Means 算法 K-Means 术语 K 值如何确定 K-Means 场景 美国总统大选摇争取摆选民 电商平台用户分层 给亚洲球队做聚类 ​编辑 其他场景 K-Means 工作流程 K-Means 开发流程 K-Means的底层代码实现 K-Means 的评价标准 K-Means 算法 对于 n 个样本点来说&am…

五、高并发内存池--Thread Cache

五、高并发内存池–Thread Cache 5.1 Thread Cache的工作原理 thread cache是哈希桶结构&#xff0c;每个桶是一个按桶位置映射大小的内存块对象的自由链表。每个线程都会有一个thread cache对象&#xff0c;这样每个线程在这里获取对象和释放对象时都是无锁的。 每一个线程…

查询优化器内核剖析之查询的执行与计划的缓存 Hint 提示

本篇议题如下: 查询的执行与计划的缓存 Hint 提示 首先看到第一个议题 查询的执行与计划的缓存 一旦查询被优化之后&#xff0c;存储引擎就使用选中的执行计划将结果返回&#xff0c;而被使用的这个执行 计划就会被保存在内存中一个被称之为“计划缓存”的地方&#xff0c;从…

MyBatis多表查询

1. 多表关系回顾 在项目开发当中一对一关系的表不常见&#xff0c;因为一对一关系的两张表通常会合并为一张表。 2. 一对一查询 一张表对应一个实体类&#xff0c;一个实体类对应一个Mapper接口。 例如&#xff1a;查询菜品&#xff0c;同时查询出该菜品所属的分类。 分析&…

F5服务器负载均衡能力如何?一文了解

但凡知道服务器负载均衡这个名词的&#xff0c;基本都知道 F5&#xff0c;因为负载均衡是 F5 的代表作&#xff0c;换句话来说&#xff0c;负载均衡就是由 F5 发明的。提到F5服务器负载均衡能力如何&#xff1f;不得不关注F5提出的关于安全、网络全面优化的解决方案&#xff0c…

07:STM32----ADC模数转化器

目录 1:简历 2:逐次逼近型ADC 3:ADC基本结构 4:输入通道 5:规则组的4种转换模式 1:单次转化,非扫描模式 2:连续转化,非扫描模式 3:单次转化,扫描模式 4:单次转化,扫描模式 6:触发控制 7:数据对齐 8:转化时间 9:校准 10:ADC的硬件电路 A: AD单通道 1:连接图 2:函…