nnUNet v2数据准备及格式转换 (二)

如果你曾经使用过nnUNet V1,那你一定明白数据集的命名是有严格要求的,必须按照特定的格式来进行命名才能正常使用。

这一节的学习需要有数据,如果你有自己的数据,可以拿自己的数据来实验,如果没有,可以用十项全能数据集,在之前分享过
nnUNet实战一使用预训练nnUNet模型进行推理,这篇文章里有数据集的下载地址和方法。如果网络问题下载不下来,可以微我。

nnUNet v2 支持的数据格式

在V2版本中支持的数据格式类型更多,默认情况下,支持以下文件格式:

  • NaturalImage2DIO:.png、.bmp、.tif
  • NibabelIO:.nii.gz、.nrrd、.mha
  • NibabelIOWithReorient:.nii.gz、.nrrd、.mha。该阅读器会将图像重新定向为 RAS!
  • SimpleITKIO:.nii.gz、.nrrd、.mha
  • Tiff3DIO:.tif、.tiff。3D tif 图像!由于 TIF 没有存储间距信息的标准化方法,因此 nnU-Net 期望每个 TIF 文件都附带一个同名的 .json 文件,其中包含三个数字(没有单位,没有逗号。只是用空格分隔),每个数字一个方面。

nnU-Net V2 的一大变化是支持多种输入文件类型。将所有内容转换为 .nii.gz 的日子已经一去不复返了!nnU-Net 附带了广泛的读取器+写入器集合,您甚至可以添加自己的读取器+写入器来支持您的数据格式!请参阅此处。

数据集文件夹结构

数据集必须位于该nnUNet_raw文件夹中,

nnUNet_raw/
├── Dataset001_BrainTumour
├── Dataset002_Heart
├── Dataset003_Liver
├── Dataset004_Hippocampus
├── Dataset005_Prostate
├── ...
在每个数据集文件夹中,具有以下结构:
Dataset001_BrainTumour/
├── dataset.json
├── imagesTr
├── imagesTs  # optional
└── labelsTr
nnUNet_raw/Dataset001_BrainTumour/
├── dataset.json
├── imagesTr
│   ├── BRATS_001_0000.nii.gz
│   ├── BRATS_001_0001.nii.gz
│   ├── BRATS_001_0002.nii.gz
│   ├── BRATS_001_0003.nii.gz
│   ├── BRATS_002_0000.nii.gz
│   ├── BRATS_002_0001.nii.gz
│   ├── BRATS_002_0002.nii.gz
│   ├── BRATS_002_0003.nii.gz
│   ├── ...
├── imagesTs
│   ├── BRATS_485_0000.nii.gz
│   ├── BRATS_485_0001.nii.gz
│   ├── BRATS_485_0002.nii.gz
│   ├── BRATS_485_0003.nii.gz
│   ├── BRATS_486_0000.nii.gz
│   ├── BRATS_486_0001.nii.gz
│   ├── BRATS_486_0002.nii.gz
│   ├── BRATS_486_0003.nii.gz
│   ├── ...
└── labelsTr├── BRATS_001.nii.gz├── BRATS_002.nii.gz├── ...

需要注意的是,与第一版本中的文件夹及数据集命名有些许差别
在这里插入图片描述

比如,第一版数据集用 TaskXXXX, V2版本用 DatasetXXX

dataset.json 文件构建

第二版本的 dataset.json 文件也发生了变化

dataset.json 包含 nnU-Net 训练所需的元数据。自版本 1 以来,我们大大减少了必填字段的数量! (第一版见 nnUNet实战一使用预训练nnUNet模型进行推理)

以下是 MSD 的 Dataset005_Prostate 示例中的 dataset.json 的样子:

{ "channel_names": {  # formerly modalities"0": "T2", "1": "ADC"}, "labels": {  # THIS IS DIFFERENT NOW!"background": 0,"PZ": 1,"TZ": 2}, "numTraining": 32, "file_ending": ".nii.gz""overwrite_image_reader_writer": "SimpleITKIO"  # optional! If not provided nnU-Net will automatically determine the ReaderWriter}

Channel_names 确定 nnU-Net 使用的归一化。如果通道被标记为“CT”,则将使用基于前景像素强度的全局归一化。如果是其他情况,将使用 per-channel z-scoring

相对于 nnU-Net v1 的重要变化:

  • modality现在称为channel_names,以消除对医学图像的强烈偏见
  • Lable 的结构不同(name -> int 而不是 int -> name)。这样做的好处有助于层次标签的使用,具体见 【nnUNet v2版本与V1版有什么不同?】 这一部分
  • 添加file_ending字段:以支持不同的输入文件类型
  • overwrite_image_reader_writer可选!可用于指定ReaderWriter 类。如果不提供,nnU-Net会自动判断ReaderWriter
  • regions_class_order仅用于基于regions的训练,具体见 region based trianing

由于V2版中,不需要指定训练和测试集的图像名字,减少了很多字段,构建起来就很简单了。可以把上述 dataset.json 复制下来,按照自己的数据集手动修改一下。

nnUNet v1 的数据格式如何转换为 V2 的格式

假设有一个数据集已经在 V1 上跑过了,如果您要从 v1 上迁移过来,请使用nnUNetv2_convert_old_nnUNet_dataset转换现有数据集。

迁移 nnU-Net v1 任务的示例:

nnUNetv2_convert_old_nnUNet_dataset INPUT_FOLDER OUTPUT_FOLDER
eg: nnUNetv2_convert_old_nnUNet_dataset /nnUNet_raw_data_base/nnUNet_raw_data/Task131_WORD/ Dataset131_WORD
  • input_folder:指的是 V1 版本里要转换的数据(需要给出具体地址)
  • output_folder: 只需要给出名字,不需要具体地址

此处迁移,主要是自动帮你修改 dataset.json.并帮你把数据放入 V2 的 nnUNet_raw 文件夹里面去

文章持续更新,可以关注微信公众号【医学图像人工智能实战营】获取最新动态,一个关注于医学图像处理领域前沿科技的公众号。坚持已实践为主,手把手带你做项目,打比赛,写论文。凡原创文章皆提供理论讲解,实验代码,实验数据。只有实践才能成长的更快,关注我们,一起学习进步~

我是Tina, 我们下篇博客见~

白天工作晚上写文,呕心沥血

觉得写的不错的话最后,求点赞,评论,收藏。或者一键三连
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/118256.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python语音识别处理详解

概要 人们对智能语音助手的需求不断提高,语音识别技术也随之迅速发展。在这篇文章中,我们将介绍如何使用Python的SpeechRecognition和pydub等库来实现语音识别和处理,从而打造属于自己的智能语音助手。 1. 什么是语音识别? 语音…

Vue学习(三)

一、列表渲染 v-for指令 用于展示列表数据 语法<li v-for"(item, index) in items" :key"index"></li>key可以是index,最好是遍历对象的唯一标识 可遍历&#xff1a;数组、对象 <!DOCTYPE html> <html lang"en">&l…

MySQL8.xx 解决1251 client does not support ..解决方案

MySQL8.0.30一主两从复制与配置(一)_蜗牛杨哥的博客-CSDN博客 MySQL8.xx一主两从复制安装与配置 MySQL8.XX随未生成随机密码解决方案 一、客户端连接mysql&#xff0c;问题&#xff1a;1251 client does not support ... 二、解决 1.查看用户信息 备注&#xff1a;host为 % …

linux并发服务器 —— 多进程并发(四)

进程概述 程序是包含一系列信息的文件&#xff0c;描述了如何在运行时创建一个进程&#xff1b; 进程是正在运行的程序的实例&#xff0c;可以用一个程序来创建多个进程&#xff1b; 用户内存空间包含程序代码以及代码所使用的变量&#xff0c;内核数据结构用于维护进程状态…

Spring Cloud--从零开始搭建微服务基础环境【三】

&#x1f600;前言 本篇博文是关于Spring Cloud–从零开始搭建微服务基础环境【三】&#xff0c;希望你能够喜欢 &#x1f3e0;个人主页&#xff1a;晨犀主页 &#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是晨犀&#xff0c;希望我的文章可以帮助到大家&#xff0c;…

深度学习推荐系统(五)DeepCrossing模型及其在Criteo数据集上的应用

深度学习推荐系统(五)Deep&Crossing模型及其在Criteo数据集上的应用 在2016年&#xff0c; 随着微软的Deep Crossing&#xff0c; 谷歌的Wide&Deep以及FNN、PNN等一大批优秀的深度学习模型被提出&#xff0c; 推荐系统全面进入了深度学习时代&#xff0c; 时至今日&am…

Qt应用开发(基础篇)——对话框窗口 QDialog

一、前言 QDialog类继承于QWidget&#xff0c;是Qt基于对话框窗口(消息窗口QMessageBox、颜色选择窗口QColorDialog、文件选择窗口QFileDialog等)的基类。 QDialog窗口是顶级的窗口&#xff0c;一般情况下&#xff0c;用来当做用户短期任务(确认、输入、选择)或者和用户交流(提…

深度学习怎么学?

推荐这本小白看的《深度学习&#xff1a;从基础到实践&#xff08;上下册&#xff09;》。 深度学习&#xff1a;从基础到实践&#xff08;上下册&#xff09; 深入浅出的讲述了深度学习的基本概念与理论知识&#xff0c;不涉及复杂的数学内容&#xff0c;零基础小白也能轻松掌…

QT day1登录界面设计

要设计如下图片&#xff1a; 代码如下&#xff1a; main.cpp widget.h widget.cpp 运行效果&#xff1a; 2&#xff0c;思维导图

任务执行和调度----Spring线程池/Quartz

定时任务 在服务器中可能会有定时任务&#xff0c;但是不知道分布式系统下次会访问哪一个服务器&#xff0c;所以服务器中的任务就是相同的&#xff0c;这样会导致浪费。使用Quartz可以解决这个问题。 JDK线程池 RunWith(SpringRunner.class) SpringBootTest ContextConfi…

Spark-Core核心算子

文章目录 一、数据源获取1、从集合中获取2、从外部存储系统创建3、从其它RDD中创建4、分区规则—load数据时 二、转换算子(Transformation)1、Value类型1.1 map()_1.2 mapPartitions()1.3 mapPartitionsWithIndex(不常用)1.4 filterMap()_扁平化&#xff08;合并流&#xff09;…

卡特兰数和算法

在组合数学中&#xff0c;卡特兰数是一系列自然数&#xff0c;出现在各种组合计数问题中&#xff0c;通常涉及递归定义的对象。它们以比利时数学家尤金查尔斯卡特兰&#xff08;Eugne Charles Catalan&#xff09;的名字命名。 卡特兰数序列是1, 1, 2, 5, 14, 42......&#xf…

java.sql.SQLException: com.mysql.cj.jdbc.Driver

这篇文章分享一下Springboot整合Elasticsearch时遇到的一个问题&#xff0c;项目正常启动&#xff0c;但是查询数据库的时候发生了一个异常java.sql.SQLException: com.mysql.cj.jdbc.Driver java.sql.SQLException: com.mysql.cj.jdbc.Driverat com.alibaba.druid.util.JdbcU…

【德哥说库系列】-ASM管理Oracle 19C单实例部署

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是【IT邦德】&#xff0c;江湖人称jeames007&#xff0c;10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】&#xff01;&#x1f61c;&am…

微软 Turing Bletchley v3视觉语言模型更新:必应搜索图片更精准

据微软新闻稿透露&#xff0c;在推出第三代Turing Bletchley视觉语言模型后&#xff0c;微软计划逐步将其整合到Bing等相关产品中&#xff0c;以提供更出色的图像搜索体验。这款模型最初于2021年11月面世&#xff0c;并在2022年秋季开始邀请用户测试。 凭借用户的反馈和建议&am…

mapboxGL3新特性介绍

概述 8月7日&#xff0c;mapboxGL发布了3版本的更新&#xff0c;本文带大家一起来看看mapboxGL3有哪些新的特性。 新特新 如上图所示&#xff0c;是mapboxGL官网关于新版的介绍&#xff0c;大致翻译如下&#xff1a; 增强了web渲染的质量、便捷程度以及开发人员体验&#xff…

【云计算•云原生】5.云原生之初识DevOps

文章目录 1.DevOps背景2.DevOps概念3.DevOps工具链 1.DevOps背景 软件开发必须包含两个团队&#xff1a;开发团队和运维团队 开发团队负责开发项目&#xff0c;系统迭代更新运维团队负责项目测试以及部署上线&#xff0c;维持系统稳定运行 一个软件周期中是由这两个团队相互…

buildroot修改内核防止清理重新加载办法

当你使用 Buildroot 构建 Linux 内核时&#xff0c;如果对内核文件进行了手动修改&#xff0c;重新执行 Buildroot 的构建过程将会覆盖你所做的修改。这是因为 Buildroot会根据配置重新下载、提取和编译内核。 为了避免在重新构建时覆盖你的修改&#xff0c;可以采取以下两种方…

数据可视化与数字孪生:理解两者的区别

在数字化时代&#xff0c;数据技术正在引领创新&#xff0c;其中数据可视化和数字孪生是两个备受关注的概念。尽管它们都涉及数据的应用&#xff0c;但在本质和应用方面存在显著区别。本文带大探讨数据可视化与数字孪生的差异。 概念 数据可视化&#xff1a; 数据可视化是将复…

Windows下将nginx等可执行文件添加为服务

Windows下将nginx等可执行文件添加为服务 为什么将可执行文件添加为服务&#xff1f;将可执行文件添加为服务的步骤步骤 1&#xff1a;下载和安装 Nginx步骤 2&#xff1a;添加为服务方法一&#xff1a;使用 Windows 自带的 sc 命令方法二&#xff1a;使用 NSSM&#xff08;Non…