Python写一个爱心

项目代码:

import random
from math import sin, cos, pi, log
from tkinter import *# 定义窗口的大小
CANVAS_WIDTH = 640
CANVAS_HEIGHT = 480
CANVAS_CENTER_X = CANVAS_WIDTH / 2
CANVAS_CENTER_Y = CANVAS_HEIGHT / 2
IMAGE_ENLARGE = 11
# 定义爱心的颜色
HEART_COLOR = "pink"def heart_function(t, shrink_ratio: float = IMAGE_ENLARGE):x = 16 * (sin(t) ** 3)y = -(13 * cos(t) - 5 * cos(2 * t) - 2 * cos(3 * t) - cos(4 * t))x *= shrink_ratioy *= shrink_ratiox += CANVAS_CENTER_Xy += CANVAS_CENTER_Yreturn int(x), int(y)def scatter_inside(x, y, beta=0.15):ratio_x = - beta * log(random.random())ratio_y = - beta * log(random.random())dx = ratio_x * (x - CANVAS_CENTER_X)dy = ratio_y * (y - CANVAS_CENTER_Y)return x - dx, y - dydef shrink(x, y, ratio):force = -1 / (((x - CANVAS_CENTER_X) ** 2 + (y - CANVAS_CENTER_Y) ** 2) ** 0.6)  # 这个参数...dx = ratio * force * (x - CANVAS_CENTER_X)dy = ratio * force * (y - CANVAS_CENTER_Y)return x - dx, y - dydef curve(p):return 2 * (2 * sin(4 * p)) / (2 * pi)# 定义了一个名为Heart的类,其中包括了一些函数和变量
class Heart:# 在`__init__`函数中,首先定义了原始爱心坐标集合(`self._points`)、# 边缘扩散效果点坐标集合(`self._edge_diffusion_points`)、# 中心扩散效果点坐标集合(`self._center_diffusion_points`)# 以及每帧动态点坐标的集合(`self.all_points`)def __init__(self, generate_frame=20):self._points = set()  # 原始爱心坐标集合self._edge_diffusion_points = set()  # 边缘扩散效果点坐标集合self._center_diffusion_points = set()  # 中心扩散效果点坐标集合self.all_points = {}  # 每帧动态点坐标# 然后调用了`build`函数生成原始爱心的坐标集合、边缘扩散效果点坐标集合和中心扩散效果点坐标集合self.build(2000)self.random_halo = 1000self.generate_frame = generate_framefor frame in range(generate_frame):self.calc(frame)# 在`build`函数中,首先生成了一定量的原始爱心坐标,并将其加入`self._points`集合中def build(self, number):for _ in range(number):t = random.uniform(0, 2 * pi)x, y = heart_function(t)self._points.add((x, y))# 然后对于每一个原始爱心坐标,随机生成三个偏移量,# 通过`scatter_inside`函数将其加入到边缘扩散效果点坐标集合中for _x, _y in list(self._points):for _ in range(3):x, y = scatter_inside(_x, _y, 0.05)self._edge_diffusion_points.add((x, y))point_list = list(self._points)for _ in range(4000):x, y = random.choice(point_list)x, y = scatter_inside(x, y, 0.17)self._center_diffusion_points.add((x, y))# 在`calc_position`函数中,# 根据当前点和心形的位置计算出力的大小与方向,并根据这个大小与方向随机移动一些距离。@staticmethoddef calc_position(x, y, ratio):force = 1 / (((x - CANVAS_CENTER_X) ** 2 + (y - CANVAS_CENTER_Y) ** 2) ** 0.520)  # 魔法参数dx = ratio * force * (x - CANVAS_CENTER_X) + random.randint(-1, 1)dy = ratio * force * (y - CANVAS_CENTER_Y) + random.randint(-1, 1)return x - dx, y - dy# 函数`calc`中,定义了半径的缩放比例、光晕的半径和数量,并生成了一定量的光晕点并将其加入到`self.all_points`中,# 然后,针对每一个点集合,通过调用`calc_position`函数计算其移动后的坐标,将其加入到`all_points`中def calc(self, generate_frame):ratio = 10 * curve(generate_frame / 10 * pi)  # 圆滑的周期的缩放比例halo_radius = int(4 + 6 * (1 + curve(generate_frame / 10 * pi)))halo_number = int(3000 + 4000 * abs(curve(generate_frame / 10 * pi) ** 2))all_points = []heart_halo_point = set()for _ in range(halo_number):t = random.uniform(0, 2 * pi)x, y = heart_function(t, shrink_ratio=11.6)x, y = shrink(x, y, halo_radius)if (x, y) not in heart_halo_point:heart_halo_point.add((x, y))x += random.randint(-14, 14)y += random.randint(-14, 14)size = random.choice((1, 2, 2))all_points.append((x, y, size))for x, y in self._points:x, y = self.calc_position(x, y, ratio)size = random.randint(1, 3)all_points.append((x, y, size))for x, y in self._edge_diffusion_points:x, y = self.calc_position(x, y, ratio)size = random.randint(1, 2)all_points.append((x, y, size))for x, y in self._center_diffusion_points:x, y = self.calc_position(x, y, ratio)size = random.randint(1, 2)all_points.append((x, y, size))self.all_points[generate_frame] = all_points# 在`render`函数中,将所有点集合中的点在画布上绘制出来。def render(self, render_canvas, render_frame):for x, y, size in self.all_points[render_frame % self.generate_frame]:render_canvas.create_rectangle(x, y, x + size, y + size, width=0, fill=HEART_COLOR)# 通过`draw`函数不停地在画布上绘制出变化的爱心,实现了动态爱心的效果。
def draw(main: Tk, render_canvas: Canvas, render_heart: Heart, render_frame=0):render_canvas.delete('all')render_heart.render(render_canvas, render_frame)main.after(160, draw, main, render_canvas, render_heart, render_frame + 1)if __name__ == '__main__':root = Tk()  # 一个Tkcanvas = Canvas(root, bg='black', height=CANVAS_HEIGHT, width=CANVAS_WIDTH)canvas.pack()# 创建爱心的对象heart = Heart()# 调用绘制爱心的方法draw(root, canvas, heart)root.mainloop()

效果图如下:

感谢预览,给个点赞和关注吧~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/11892.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leetcode——二叉树的最近公共祖先(java)

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的…

Android学习制作app(ESP8266-01S连接-简单制作)

一、理论 部分理论见arduino学习-CSDN博客和Android Studio安装配置_android studio gradle 配置-CSDN博客 以下直接上代码和效果视频,esp01S的收发硬件代码目前没有分享,但是可以通过另一个手机网络调试助手进行模拟。也可以直接根据我的代码进行改动…

20250202在Ubuntu22.04下使用Guvcview录像的时候降噪

20250202在Ubuntu22.04下使用Guvcview录像的时候降噪 2025/2/2 21:25 声卡:笔记本电脑的摄像头自带的【USB接口的】麦克风。没有外接3.5mm接口的耳机。 缘起:在安装Ubuntu18.04/20.04系统的笔记本电脑中直接使用Guvcview录像的时候底噪很大! …

MySQL子查询

一、子查询的概述 1、理解:可以理解为嵌套查询,查询的内部进行查询 2、称谓规范:外查询(主查询)、内查询(子查询),这种称呼是相对的。 子查询(内查询)在主查…

MongoDb user自定义 role 添加 action(collStats, EstimateDocumentCount)

使用 mongosh cd mongsh_bin_path mongosh “mongodb://user:passip:port/db”这样就直接进入了对应的db 直接输入: 这样 role “read_only_role" 就获得了3个 action, 分别是 查询,列举集合,集合元数据查询 P.S: 如果没有 …

结构体DMA串口接收比特错位

发送: 显示: uint16_t接收时候会比特错位。

经典本地影音播放器MPC-BE.

经典本地影音播放器MPC-BE 链接:https://pan.xunlei.com/s/VOIAZbbIuBM1haFdMYCubsU-A1?pwd4iz3# MPC-BE(Media Player Classic Black Edition)是来自 MPC-HC(Media Player Classic Home Cinema)的俄罗斯开发者重新…

python学opencv|读取图像(五十四)使用cv2.blur()函数实现图像像素均值处理

【1】引言 前序学习进程中,对图像的操作均基于各个像素点上的BGR值不同而展开。 对于彩色图像,每个像素点上的BGR值为三个整数,因为是三通道图像;对于灰度图像,各个像素上的BGR值是一个整数,因为这是单通…

【开源免费】基于Vue和SpringBoot的工作流程管理系统(附论文)

本文项目编号 T 193 ,文末自助获取源码 \color{red}{T193,文末自助获取源码} T193,文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…

IntelliJ IDEA远程开发代理远程服务器端口(免费内网穿透)

IntelliJ IDEA远程开发代理远程服务器端口(免费内网穿透)(JetBrains家的其他IDE应该也支持) 之前看到宇宙第一IDE VS Code好像默认代理了远程的端口,但是一直没找到IDEA的同类功能,这次终于发现了 以Intell…

文字显示省略号

多行文本溢出显示省略号

STM32_SD卡的SDIO通信_DMA读写

本篇,将使用CubeMXKeil,创建一个SD卡的DMA读写工程。 目录 一、简述 二、CubeMX 配置 SDIO DMA 三、Keil 编辑代码 四、实验效果 实现效果,如下图: 一、简述 上篇已简单介绍了SD、SDIO,本篇不再啰嗦,…

智能小区物业管理系统推动数字化转型与提升用户居住体验

内容概要 在当今快速发展的社会中,智能小区物业管理系统的出现正在改变传统的物业管理方式。这种系统不仅仅是一种工具,更是一种推动数字化转型的重要力量。它通过高效的技术手段,将物业管理与用户居住体验紧密结合,无疑为社区带…

基于STM32景区环境监测系统的设计与实现(论文+源码)

1系统方案设计 根据系统功能的设计要求,展开基于STM32景区环境监测系统设计。如图2.1所示为系统总体设计框图。系统以STM32单片机作为系统主控模块,通过DHT11传感器、MQ传感器、声音传感器实时监测景区环境中的温湿度、空气质量以及噪音数据。系统监测环…

八. Spring Boot2 整合连接 Redis(超详细剖析)

八. Spring Boot2 整合连接 Redis(超详细剖析) 文章目录 八. Spring Boot2 整合连接 Redis(超详细剖析)2. 注意事项和细节3. 最后: 在 springboot 中 , 整合 redis 可以通过 RedisTemplate 完成对 redis 的操作, 包括设置数据/获取数据 比如添加和读取数据 具体整…

【Unity3D】Tilemap俯视角像素游戏案例

目录 一、导入Tilemap 二、导入像素风素材 三、使用Tilemap制作地图 3.1 制作Tile Palette素材库 3.2 制作地图 四、实现A*寻路 五、待完善 一、导入Tilemap Unity 2019.4.0f1 已内置Tilemap 需导入2D Sprite、2D Tilemap Editor、以及一个我没法正常搜出的2D Tilemap…

企微SCRM驱动企业私域流量营销与客户关系管理的智慧革新

内容概要 在当今竞争激烈的商业环境中,企微SCRM逐渐成为企业实现私域流量营销和优化客户关系管理的重要工具。它的出现不仅提升了企业的工作效率,也改变了传统的营销方式。那么,究竟什么是企微SCRM呢?简单来说,它是将…

数据库、数据仓库、数据湖有什么不同

数据库、数据仓库和数据湖是三种不同的数据存储和管理技术,它们在用途、设计目标、数据处理方式以及适用场景上存在显著差异。以下将从多个角度详细说明它们之间的区别: 1. 数据结构与存储方式 数据库: 数据库主要用于存储结构化的数据&…

前端力扣刷题 | 6:hot100之 矩阵

73. 矩阵置零 给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 法一: var setZeroes function(matrix) {let setX new Set(); // 用于存储需要置零的行索引let setY new Set(); //…

【编译系列】Torch.compile()训练编译——算子融合逻辑 工程化

1. 背景: torch.compile()中,Dynamo作为前端负责计算图的捕获,后端有inductor、tvm等进行编译优化。 Dynamo:在Python字节码层面注入pass,实现bytecode-to-bytecode的优化,通过对bytecode逐行进行解析构建FX GraphInductor:负责对FX Graph进行AOTAutograd生成joint-gra…