二进制搭建kubernetes(K8S)

二进制搭建kubernetes(K8S)

    • 一、常见的K8S部署方式
      • 1.Minikube
      • 2.Kubeadmin
      • 3.二进制安装部署
    • 二、二进制搭建K8S(单台master)
      • 1.部署架构规划
      • 2.系统初始化配置
      • 3.部署 docker引擎
      • 4.部署 etcd 集群
      • 4.部署 Master 组件
      • 5.部署 Worker Node 组件
      • 6.部署网络组件
    • 三、负载均衡部署
      • 1.配置load balancer集群双机热备负载均衡(nginx实现负载均衡,keepalived实现双机热备)
      • 2.修改nginx配置文件,配置四层反向代理负载均衡,指定k8s群集2台master的节点ip和6443端口
      • 3.检查配置文件语法
      • 4.部署keepalived服务
      • 5.创建nginx状态检查脚本
      • 6.启动keepalived服务(一定要先启动了nginx服务,再启动keepalived服务)
      • 7.修改node节点上的bootstrap.kubeconfig,kubelet.kubeconfig配置文件为VIP
      • 8.重启kubelet和kube-proxy服务
      • 9.在 lb01 上查看 nginx 和 node 、 master 节点的连接状态

一、常见的K8S部署方式

1.Minikube

Minikube是一个工具,可以在本地快速运行一个单节点微型K8S,仅用于学习、预览K8s的些特性使用。

部署地址: https://kubernetes.io/docs/setup/minikube

2.Kubeadmin

Kubeadmin也是一个工具,提供kubeadm init和kubeadm join,用于快速部署K8S集群,相对简单。

部署地址:https://kubernetes,io/docs/reference/setup-tools/kubeadm/kubeadm/

3.二进制安装部署

从官方下载发行版的二进制包,手动部署每个组件和自签TLS证书,组成K8S集群,新手推荐。

部署地址:https://qithub,com/kubernetes/kubernetes/releases

总:Kubeadm降低部署门槛,但屏蔽了很多细节,遇到问题很难排查。如果想更容易可控,推荐使用二进制包部署Kubernetes集群,虽然手动部署麻烦点,期间可以学习很多工作原理,也利于后期维护和出错排错。

二、二进制搭建K8S(单台master)

1.部署架构规划

主机节点主机地址安装的软件
master01192.168.174.12apiserver、comtroller-manager、scheduler、etcd01
node01192.168.174.18kubelet、kube-proxy、docker、etcd02
node02192.168.174.19kubelet、kube-proxy、docker、etcd03

后面服务搭建规划

VIP:192.168.174.100

master02:192.168.174.15

负载均衡nginx+keepalive01(master):192.168.174.18
负载均衡nginx+keepalive02(backup):192.168.174.19

2.系统初始化配置

(1)所有节点上操作

#关闭防火墙
systemctl stop firewalld
systemctl disable firewalld
#永久关闭firewalld并清空iptables所有表规则
iptables -F && iptables -t nat -F && iptables -t mangle -F && iptables -X
#关闭selinux
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config
#关闭swap
swapoff -a
sed -ri 's/.*swap.*/#&/' /etc/fstab 

(2)三个节点分开执行

#根据规划设置主机名
#192.168.174.12上面执行
hostnamectl set-hostname master01
#192.168.174.18上面执行
hostnamectl set-hostname node01
#192.168.174.19上面执行
hostnamectl set-hostname node02

(3)所有节点执行

#刷新bash使得修改的主机名生效
bash
#使用多行重定向将主机名对应的ip写到hosts里面加快访问速度,注意改为自己的ip
cat >> /etc/hosts << EOF
192.168.174.12 master01
192.168.174.18 node01
192.168.174.19 node02
EOF
#调整内核参数
#使用多行重定向调整内核参数,前2行为开启网桥模式后2行为关闭ipv6协议和开启路由转发
cat > /etc/sysctl.d/k8s.conf << EOF
#开启网桥模式,可将网桥的流量传递给iptables链
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
#关闭ipv6协议
net.ipv6.conf.all.disable_ipv6=1
net.ipv4.ip_forward=1
EOF
#加载内核使得配置内核参数生效
sysctl --system
#时间同步
#安装ntpdate时间同步程序,与本机的windows同步时间
yum install ntpdate -y
ntpdate time.windows.com

3.部署 docker引擎

所有 node 节点部署docker引擎192.168.174.18、192.168.174.19

#安装依赖包以便在系统上安装docker
yum install -y yum-utils device-mapper-persistent-data lvm2 
#添加Docker官方源,并将它设置为docker-ce.repo文件
yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo 
#yum安装docker-ce和docker客户端以及容器io
yum install -y docker-ce docker-ce-cli containerd.io
#开机自启并现在启动docker
systemctl start docker.service
systemctl enable docker.service 

4.部署 etcd 集群

(1)etcd简介

① etcd概念:

etcd是CoreOS团队于2013年6月发起的开源项目,它的目标是构建一个高可用的分布式键值(key-value)数据库。etcd内部采用raft协议作为一致性算法,etcd是go语言编写的。

② etcd的特点

etcd 作为服务发现系统,有以下的特点:
简单:安装配置简单,而且提供了HTTP API进行交互,使用也很简单
安全:支持SSL证书验证
快速:单实例支持每秒2k+读操作
可靠:采用raft算法,实现分布式系统数据的可用性和一致性

③ etcd端口及部署注意

etcd 目前默认使用2379端口提供HTTP API服务, 2380端口和peer通信(这两个端口已经被IANA(互联网数字分配机构)官方预留给etcd)。 即etcd默认使用2379端口对外为客户端提供通讯,使用端口2380来进行服务器间内部通讯。
etcd 在生产环境中一般推荐集群方式部署。由于etcd 的leader选举机制,要求至少为3台或以上的奇数台。

(2)准备签发证书环境

本文使用CFSSL工具签发证书

CFSSL 是 CloudFlare 公司开源的一款 PKI/TLS 工具。 CFSSL 包含一个命令行工具和一个用于签名、验证和捆绑 TLS 证书的 HTTP API 服务。使用Go语言编写。
CFSSL 使用配置文件生成证书,因此自签之前,需要生成它识别的 json 格式的配置文件,CFSSL 提供了方便的命令行生成配置文件。
CFSSL 用来为 etcd 提供 TLS 证书,它支持签三种类型的证书:

  • client 证书,服务端连接客户端时携带的证书,用于客户端验证服务端身份,如 kube-apiserver 访问 etcd;
  • peer 证书,相互之间连接时使用的证书,如 etcd 节点之间进行验证和通信。
    这里全部都使用同一套证书认证。
  • server 证书,客户端连接服务端时携带的证书,用于服务端验证客户端身份,如 etcd 对外提供服务;本次实验使用的是server证书。

(3)etcd 集群部署

① 在 master01节点上操作

#在线直接下载方式
#准备cfssl证书生成工具
wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -O /usr/local/bin/cfssl
wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -O /usr/local/bin/cfssljson
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -O /usr/local/bin/cfssl-certinfochmod +x /usr/local/bin/cfssl*

② 本文使用的是的直接上传的安装软件,所有需要的资源在博客文章旁边的资源里有K8S的软件包里

#将cfssl证书签发的工具和命令(cfssl、cfssljson、cfssl-certinfo)上传到/usr/local/bin目录下并添加执行权限
#cfssl:证书签发的工具命令
#cfssljson:将 cfssl 生成的证书(json格式)变为文件承载式证书
#cfssl-certinfo:验证证书的信息
#cfssl-certinfo -cert <证书名称>			#查看证书的信息cd /usr/local/bin
chmod +x /usr/local/bin/cfssl*
#生成Etcd证书
mkdir /opt/k8s
cd /opt/k8s/
#上传 etcd-cert.sh 和 etcd.sh 到 /opt/k8s/ 目录中
chmod +x etcd-cert.sh etcd.sh
#创建用于生成CA证书、etcd 服务器证书以及私钥的目录
mkdir /opt/k8s/etcd-cert
#移动生成证书的脚本到存放etcd证书的目录下
mv etcd-cert.sh etcd-cert/
#进入创建的目录,执行脚本
cd /opt/k8s/etcd-cert/
#此脚本需要修改80到82行的ip地址依次为master01,node1,node2顺序保存退出
vim  ./etcd-cert.sh
#执行脚本,生成CA证书、etcd 服务器证书以及私钥
./etcd-cert.sh
#查看生成的证书是否为4个.pem结尾3个.json结尾
ls  /opt/k8s/etcd-cert

在这里插入图片描述

#上传 etcd-v3.4.9-linux-amd64.tar.gz 到 /opt/k8s 目录中,启动etcd服务
cd /opt/k8s/
tar zxvf etcd-v3.4.9-linux-amd64.tar.gz
#解压上传的etcd包,内容为3个.md文件一个目录,一个etcd和一个etcdctl启动控制脚本
ls etcd-v3.4.9-linux-amd64
#创建用于存放etcd配置文件,命令文件,证书的目录
mkdir -p /opt/etcd/{cfg,bin,ssl}
#进入解压的etcd包中
cd /opt/k8s/etcd-v3.4.9-linux-amd64/
#将etcd启动和etcdctl控制脚本移动到创建的用于存放etcd命令文件的bin目录下
mv etcd etcdctl /opt/etcd/bin/
#进入创建etcd证书的目录并将本目录下所有证书全部拷贝一份到创建的用于存放etcd证书的路径ssl上
cp /opt/k8s/etcd-cert/*.pem /opt/etcd/ssl/
#进入存放etcd.sh部署etcd集群的脚本目录执行etcd.sh脚本 后面跟三个etcd集群的ip注意格式,进入卡住状态等待其他节点加入,这里需要三台etcd服务同时启动,如果只启动其中一台后,服务会卡在那里,直到集群中所有etcd节点都已启动,先操作不然不会生成system管理和配置文件,重新开启一个shell查看etcd状态
#另一个窗口执行
#查看etcd集群状态是否为自己的三个etcd  ip
ps -ef | grep etcd
#把etcd相关证书文件、命令文件和服务管理文件全部拷贝到另外两个etcd集群节点
scp -r /opt/etcd/ root@192.168.174.18:/opt/
scp -r /opt/etcd/ root@192.168.174.19:/opt/
scp /usr/lib/systemd/system/etcd.service root@192.168.174.18:/usr/lib/systemd/system/
scp /usr/lib/systemd/system/etcd.service root@192.168.174.19:/usr/lib/systemd/system/

② 在 node01 节点上操作

#在 node01 节点上操作
#修改scp过来的etcd配置文件
vim /opt/etcd/cfg/etcd
#[Member]
ETCD_NAME="etcd02"											#修改为etcd02
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.174.18:2380"			#修改为node1的ip地址
ETCD_LISTEN_CLIENT_URLS="https://192.168.174.18:2379"		#修改为node1的ip地址#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.174.18:2380"		#修改为node1的ip地址
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.174.18:2379"			#修改为node1的ip地址
ETCD_INITIAL_CLUSTER="etcd01=https://192.168.174.12:2380,etcd02=https://192.168.174.18:2380,etcd03=https://192.168.174.19:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
systemctl start etcd
systemctl enable etcd
systemctl status etcd

③ 在 node02 节点上操作

#在 node02 节点上操作
vim /opt/etcd/cfg/etcd
#[Member]
ETCD_NAME="etcd03"											#修改
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.174.19:2380"			#修改为node2的ip地址
ETCD_LISTEN_CLIENT_URLS="https://192.168.198.13:2379"		#修改为node2的ip地址#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.174.19:2380"		#修改为node2的ip地址
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.174.19:2379"		    #修改为node2的ip地址
ETCD_INITIAL_CLUSTER="etcd01=https://192.168.174.12:2380,etcd02=https://192.168.174.18:2380,etcd03=https://192.168.174.19:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
systemctl start etcd
systemctl enable etcd
systemctl status etcd

master节点执行

#master节点执行
cd /opt/k8s/
./etcd.sh etcd01 192.168.174.12 etcd02=https://192.168.174.18:2380,etcd03=https://192.168.174.19:2380

node1 node2执行

#node1 node2执行
systemctl enable --now etcd
#设置开机启动并立即启动etcd,然后回到master上查看是否成功。不是一直前台运行状态即成功

master执行

#master执行:
#检查etcd群集状态
#检查集群监控状态,health全部未true即可
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.174.12:2379,https://192.168.174.18:2379,https://192.168.174.19:2379" endpoint health --write-out=table
#查看etcd集群成员列表
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.174.12:2379,https://192.168.174.18:2379,https://192.168.174.19:2379" --write-out=table member list

在这里插入图片描述

在这里插入图片描述

4.部署 Master 组件

在 master01 节点上操作

#在 master01 节点上操作
#上传 master.zip 和 k8s-cert.sh 到 /opt/k8s 目录中,解压 master.zip 压缩包
cd /opt/k8s/
#解压master组件包,里面有master的4个组件脚本,添加权限
unzip master.zip
chmod +x *.sh
#创建kubernetes工作目录
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}
#创建用于生成CA证书、相关组件的证书和私钥的目录
mkdir /opt/k8s/k8s-cert
#将k8s证书移动到创建的k8s的证书存放路径
mv /opt/k8s/k8s-cert.sh /opt/k8s/k8s-cert
cd /opt/k8s/k8s-cert/
#修改脚本中的56-60行顺序是第一个为master1、第二个为master2此为master单节点可以删除、第三个为master虚拟ip、第四load balancer01(master)第五为load balancer01(backup)。第四第五可以删除。单节点master不用,若后面需要做集群需要提前规划好ip,第一个地址为master地址:192.168.198.11;第二个地址为VTP虚拟地址:配置文件里的文字部分需删除
chmod +x k8s-cert.sh
vim /opt/k8s/k8s-cert/k8s-cert.sh
#生成CA证书、相关组件的证书和私钥
./k8s-cert.sh
#显示生成的证书等一共8个.pem结尾
ls *pem

在这里插入图片描述

在这里插入图片描述

#将ca证书和apiserver证书拷贝到创建的存放证书的ssl/目录下
cp ca*pem apiserver*pem /opt/kubernetes/ssl/
#上传 kubernetes-server-linux-amd64.tar.gz 到 /opt/k8s/ 目录中,解压 kubernetes 压缩包
cd /opt/k8s/
#上传 kubernetes-server-linux-amd64.tar.gz 到 /opt/k8s/ 目录中,解压 kubernetes 压缩包
tar zxvf kubernetes-server-linux-amd64.tar.gz
#进入解压后的k8s的bin目录中将4个组件拷贝到创建的k8s存放bin文件的路径下
cd /opt/k8s/kubernetes/server/bin
cp kube-apiserver kubectl kube-controller-manager kube-scheduler /opt/kubernetes/bin/
ln -s /opt/kubernetes/bin/* /usr/local/bin/
#本地创建 bootstrap token 认证文件,apiserver 启动时会调用,然后就相当于在集群内创建了一个这个用户,接下来就可以用 RBAC 给他授权
cd /opt/k8s/
vim token.sh#!/bin/bash
#获取随机数前16个字节内容,以十六进制格式输出,并删除其中空格
BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ' ')
#生成 token.csv 文件,按照 Token序列号,用户名,UID,用户组 的格式生成
cat > /opt/kubernetes/cfg/token.csv <<EOF
${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"system:kubelet-bootstrap"
EOF#保存后退出
chmod +x token.sh
./token.sh
#创建 bootstrap token 认证文件,apiserver 启动时会调用,然后就相当于在集群内创建了一个这个用户,接下来就可以用 RBAC 给他授权,查看是否生成了csv文件
cat /opt/kubernetes/cfg/token.csv

在这里插入图片描述

#二进制文件、token、证书都准备好后,开启 apiserver 服务,将apiserver.sh脚本导入到目录下
cd /opt/k8s/
./apiserver.sh 192.168.174.12 https://192.168.174.12:2379,https://192.168.174.18:2379,https://192.168.174.19:2379
#检查进程是否启动成功,过滤kube-apiserver最上面一个后面会有-etcd-servers=https://192.168.174.12:2379,https://192.168.174.18:2379,https://192.168.174.19:2379 --bind-address=192.168.174.12 --secure-port=6443此信息为正常,注意ip要改为自己的ip地址
https://blog.csdn.net/weixin_67287151/article/details/130562192ps aux | grep kube-apiserver

在这里插入图片描述

#安全端口6443用于接收HTTPS请求,用于基于Token文件或客户端证书等认证
#过滤端口只有监控本机ip的6443为正常
netstat -natp | grep 6443 

在这里插入图片描述

#启动 scheduler 服务
cd /opt/k8s/
#修改脚本中的ip,第47行KUBE_APISERVER="https://192.168.174.12:6443"为自己的apiserver的ip地址本文是master地址,保存退出
vim  scheduler.sh
#运行shceduler组件脚本,查看服务是否正常
./scheduler.sh
ps aux | grep kube-scheduler

在这里插入图片描述

#修改第58行的ip,KUBE_APISERVER="https://192.168.174.12:6443"为自己的apiserver的ip地址本文是master地址
vim controller-manager.sh
#启动 controller-manager 服务
./controller-manager.sh
#运行controller-manager.sh组件脚本,查看服务是否正常
ps aux | grep kube-controller-manager

在这里插入图片描述

#修改第4行的ip地址,KUBE_APISERVER="https://192.168.174.12:6443"为自己的apiserver的ip地址本文是master地址
vim ./admin.sh
#生成kubectl连接集群的证书
./admin.sh
#创建集群以及用户
kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous
#通过kubectl工具查看当前集群组件状态
kubectl get cs

在这里插入图片描述

#查看版本信息
kubectl version

在这里插入图片描述

5.部署 Worker Node 组件

在所有 node 节点上操作

#在所有 node 节点上操作
#创建kubernetes工作目录
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}
#上传 node.zip 到 /opt 目录中,解压 node.zip 压缩包,获得kubelet.sh、proxy.sh
cd /opt/
unzip node.zip
chmod +x kubelet.sh proxy.sh

在 master01 节点上操作

#在 master01 节点上操作
#把 kubelet、kube-proxy 拷贝到 node 节点
cd /opt/k8s/kubernetes/server/bin
scp kubelet kube-proxy root@192.168.174.18:/opt/kubernetes/bin/
scp kubelet kube-proxy root@192.168.174.19:/opt/kubernetes/bin/#上传 kubeconfig.sh 文件到 /opt/k8s/kubeconfig 目录中,生成 kubeconfig 的配置文件
mkdir /opt/k8s/kubeconfig
cd /opt/k8s/kubeconfig
chmod +x kubeconfig.sh
./kubeconfig.sh 192.168.174.12 /opt/k8s/k8s-cert/
#把配置文件 bootstrap.kubeconfig、kube-proxy.kubeconfig 2个授权文件拷贝到 node 节点
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.174.18:/opt/kubernetes/cfg/
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.174.19:/opt/kubernetes/cfg/
#RBAC授权,使用户 kubelet-bootstrap 能够有权限发起 CSR 请求
kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap

在这里插入图片描述

在 node01 节点上操作

#在 node01 节点上操作
#启动 kubelet 服务
cd /opt/
#此处是本机node01地址
./kubelet.sh 192.168.174.18
ps aux | grep kubelet

在这里插入图片描述

在 master01 节点上操作

#在 master01 节点上操作,通过 CSR 请求
#检查到 node01 节点的 kubelet 发起的 CSR 请求,Pending 表示等待集群给该节点签发证书
kubectl get csr
NAME                                                   AGE   SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-P22F6DfVnVdvdqPz9SXBqS8lVyhyP7yuKET3GB_ehds   40s   kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending

在这里插入图片描述

#通过 CSR 请求,注意此处是前面node的节点签发证书kubectl certificate approve
kubectl certificate approve node-csr-P22F6DfVnVdvdqPz9SXBqS8lVyhyP7yuKET3GB_ehds
#Approved,Issued 表示已授权 CSR 请求并签发证书
kubectl get csr

在这里插入图片描述

#查看节点,由于网络插件还没有部署,节点会没有准备就绪 NotReady
kubectl get node

在这里插入图片描述

在 node01 节点上操作

#在 node01 节点上操作
#加载 ip_vs 模块
for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done
#启动proxy服务
cd /opt/
./proxy.sh 192.168.174.18
ps aux | grep kube-proxy

在这里插入图片描述

6.部署网络组件

(1)K8S 中 Pod 网络介绍

① K8S 中 Pod 网络通信:

  • Pod 内容器与容器之间的通信
    在同一个 Pod 内的容器(Pod 内的容器是不会跨宿主机的)共享同一个网络命名空间,相当于它们在同一台机器上一样,可以用 localhost 地址访问彼此的端口。
  • 同一个 Node 内 Pod 之间的通信
    每个 Pod 都有一个真实的全局 IP 地址,同一个 Node 内的不同 Pod 之间可以直接采用对方 Pod 的 IP 地址进行通信,Pod1 与 Pod2 都是通过 Veth 连接到同一个 docker0/cni0 网桥,网段相同,所以它们之间可以直接通信。
  • 不同 Node 上 Pod 之间的通信
    Pod 地址与 docker0 在同一网段,docker0 网段与宿主机网卡是两个不同的网段,且不同 Node 之间的通信只能通过宿主机的物理网卡进行。要想实现不同 Node 上 Pod 之间的通信,就必须想办法通过主机的物理网卡 IP 地址进行寻址和通信。因此要满足两个条件:Pod 的 IP 不能冲突;将 Pod 的 IP 和所在的 Node 的 IP 关联起来,通过这个关联让不同 Node 上 Pod 之间直接通过内网 IP 地址通信。

② Overlay Network:

叠加网络,在二层或者三层基础网络上叠加的一种虚拟网络技术模式,该网络中的主机通过虚拟链路隧道连接起来。
通过Overlay技术(可以理解成隧道技术),在原始报文外再包一层四层协议(UDP协议),通过主机网络进行路由转发。这种方式性能有一定损耗,主要体现在对原始报文的修改。目前Overlay主要采用VXLAN。

③ VXLAN:

将源数据包封装到UDP中,并使用基础网络的IP/MAC作为外层报文头进行封装,然后在以太网上传输,到达目的地后由隧道端点解封装并将数据发送给目标地址。

④ Flannel:

Flannel 的功能是让集群中的不同节点主机创建的 Docker 容器都具有全集群唯一的虚拟 IP 地址。
Flannel 是 Overlay 网络的一种,也是将 TCP 源数据包封装在另一种网络包里面进行路由转发和通信,目前支持 UDP、VXLAN、Host-gw 3种数据转发方式。

⑤ Flannel UDP 模式的工作原理:

node跨节点通信
在这里插入图片描述

数据从主机 A 上 Pod 的源容器中发出后,经由所在主机的 docker0/cni0 网络接口转发到 flannel0 接口,flanneld 服务监听在 flannel0 虚拟网卡的另外一端。
Flannel 通过 Etcd 服务维护了一张节点间的路由表。源主机 A 的 flanneld 服务将原本的数据内容封装到 UDP 报文中, 根据自己的路由表通过物理网卡投递给目的节点主机 B 的 flanneld 服务,数据到达以后被解包,然后直接进入目的节点的 flannel0 接口, 之后被转发到目的主机的 docker0/cni0 网桥,最后就像本机容器通信一样由 docker0/cni0 转发到目标容器。

⑥ ETCD 之 Flannel 提供说明:

存储管理Flannel可分配的IP地址段资源
监控 ETCD 中每个 Pod 的实际地址,并在内存中建立维护 Pod 节点路由表

由于 UDP 模式是在用户态做转发,会多一次报文隧道封装,因此性能上会比在内核态做转发的 VXLAN 模式差。
在这里插入图片描述

⑦ VXLAN 模式:

VXLAN 模式使用比较简单,flannel 会在各节点生成一个 flannel.1 的 VXLAN 网卡(VTEP设备,负责 VXLAN 封装和解封装)。
VXLAN 模式下封包与解包的工作是由内核进行的。flannel 不转发数据,仅动态设置 ARP 表和 MAC 表项。
UDP 模式的 flannel0 网卡是三层转发,使用 flannel0 时在物理网络之上构建三层网络,属于 ip in udp ;VXLAN 模式是二层实现,overlay 是数据帧,属于 mac in udp 。

vxlan隧道方案:默认配置,利用内核级别的vxlan的封装host之间的传送包——好用

⑧ Flannel VXLAN 模式跨主机的工作原理:

  • 数据帧从主机 A 上 Pod 的源容器中发出后,经由所在主机的 docker0/cni0 网络接口转发到 flannel.1 接口
  • flannel.1 收到数据帧后添加 VXLAN 头部,封装在 UDP 报文中
  • 主机 A 通过物理网卡发送封包到主机 B 的物理网卡中
  • 主机 B 的物理网卡再通过 VXLAN 默认端口 4789 转发到 flannel.1 接口进行解封装
  • 解封装以后,内核将数据帧发送到 cni0,最后由 cni0 发送到桥接到此接口的容器 B 中。

⑨ Kubernetes的三种网络介绍
在这里插入图片描述

总:flannel三种网络模式

vxlan隧道方案: 默认配置,三层,利用内核级别的vxlan的封装host之间的传送包 好用,基于udp

host-gw路由网关 : 二层网络配置 不支持 云环境 ,通过在hst路由表中直接创建到其他主机subnet的路由条目

udp:在用户态实现的数据封装和解封装

(2)部署 flannel

在 node01 节点上操作

#在 node01 节点上操作
#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中
cd /opt/
docker load -i flannel.tar
mkdir /opt/cni/bin -p
tar zxvf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bin

在 node02 节点上操作

#在 node02 节点上操作
#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中
cd /opt/
docker load -i flannel.tar
mkdir /opt/cni/bin -p
tar zxvf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bin

在 master01 节点上操作

#在 master01 节点上操作
#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
#加载上传的flannel的yml文件部署 CNI 网络
kubectl apply -f kube-flannel.yml 
#用于在Kubernetes集群中获取kube-system命名空间中所有Pod的状态信息
kubectl get pods -n kube-system

在这里插入图片描述

#查看节点状态为ready正常
kubectl get nodes

在这里插入图片描述

(3)node02 节点部署

在 node01 节点上操作

#在 node01 节点上操作
cd /opt/
scp kubelet.sh proxy.sh root@192.168.174.19:/opt/
scp kubelet.sh proxy.sh root@192.168.174.12:/opt/
scp -r /opt/cni root@192.168.174.19:/opt/

在 node02 节点上操作

#在 node02 节点上操作
#启动kubelet服务
cd /opt/
chmod +x kubelet.sh
./kubelet.sh 192.168.174.19
ps aux | grep kubelet

在这里插入图片描述

在 master01 节点上操作

#在 master01 节点上操作
kubectl get csr
NAME                                                   AGE   SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-B-p1t9M9pHKtsc6bs4f9YCDISJ1jVYpo_L_nuHN1GiU   35s   kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending
node-csr-P22F6DfVnVdvdqPz9SXBqS8lVyhyP7yuKET3GB_ehds   11m   kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued#通过 CSR 请求,注意kubectl certificate approve后面跟的是前面查询的节点
kubectl certificate approve node-csr-P22F6DfVnVdvdqPz9SXBqS8lVyhyP7yuKET3GB_ehds#查看
kubectl get csr
NAME                                                   AGE   SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-B-p1t9M9pHKtsc6bs4f9YCDISJ1jVYpo_L_nuHN1GiU   91s   kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending
node-csr-P22F6DfVnVdvdqPz9SXBqS8lVyhyP7yuKET3GB_ehds   12m   kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

在这里插入图片描述

#加载 ipvs 模块
for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done#使用proxy.sh脚本启动proxy服务
cd /opt/
chmod +x proxy.sh
./proxy.sh 192.168.174.19#查看群集中的节点状态
kubectl get nodes

在这里插入图片描述

(4)部署 CoreDNS

在所有 node 节点上操作

#在所有 node 节点上操作
#上传 coredns.tar 到 /opt 目录中
cd /opt
docker load -i coredns.tar

在 master01 节点上操作

#在 master01 节点上操作
#上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS 
cd /opt/k8s
kubectl apply -f coredns.yamlkubectl get pods -n kube-system 
NAME                       READY   STATUS    RESTARTS   AGE
coredns-6954c77b9b-vjplb   1/1     Running   0          7s
kube-flannel-ds-v96kj      1/1     Running   0          7m32s#DNS 解析测试
kubectl run -it --rm dns-test --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
/ # nslookup kubernetes
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.localName:      kubernetes
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local

(5)master02 节点部署

//从 master01 节点上拷贝证书文件、各master组件的配置文件和服务管理文件到 master02 节点
scp -r /opt/etcd/ root@192.168.174.15:/opt/
scp -r /opt/kubernetes/ root@192.168.174.15:/opt
scp -r /root/.kube root@192.168.174.15:/root
scp /usr/lib/systemd/system/{kube-apiserver,kube-controller-manager,kube-scheduler}.service root@192.168.174.15:/usr/lib/systemd/system///修改配置文件kube-apiserver中的IP
vim /opt/kubernetes/cfg/kube-apiserver
KUBE_APISERVER_OPTS="--logtostderr=true \
--v=4 \
--etcd-servers=https://192.168.174.12:2379,https://192.168.174.18:2379,https://192.168.174.19:2379 \
--bind-address=192.168.174.15 \				#修改
--secure-port=6443 \
--advertise-address=192.168.174.15 \			#修改
......//在 master02 节点上启动各服务并设置开机自启
systemctl start kube-apiserver.service
systemctl enable kube-apiserver.service
systemctl start kube-controller-manager.service
systemctl enable kube-controller-manager.service
systemctl start kube-scheduler.service
systemctl enable kube-scheduler.service//查看node节点状态
ln -s /opt/kubernetes/bin/* /usr/local/bin/
kubectl get nodes
kubectl get nodes -o wide			#-o=wide:输出额外信息;对于Pod,将输出Pod所在的Node名
//此时在master02节点查到的node节点状态仅是从etcd查询到的信息,而此时node节点实际上并未与master02节点建立通信连接,因此需要使用一个VIP把node节点与master节点都关联起来

三、负载均衡部署

1.配置load balancer集群双机热备负载均衡(nginx实现负载均衡,keepalived实现双机热备)

在lb01、lb02节点上操作(可在node1,2上做)

配置nginx的官方在线yum源,配置本地nginx的yum源
cat > /etc/yum.repos.d/nginx.repo << 'EOF'
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
EOF
yum install nginx -y

2.修改nginx配置文件,配置四层反向代理负载均衡,指定k8s群集2台master的节点ip和6443端口

vim /etc/nginx/nginx.conf
events {worker_connections  1024;
}#添加
stream {log_format  main  '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent';access_log  /var/log/nginx/k8s-access.log  main;upstream k8s-apiserver {server 192.168.174.12:6443;server 192.168.174.15:6443;}server {listen 6443;proxy_pass k8s-apiserver;}
}http {
......

3.检查配置文件语法

nginx -t   
//启动nginx服务,查看已监听6443端口
systemctl start nginx
systemctl enable nginx
netstat -natp | grep nginx 

在这里插入图片描述

4.部署keepalived服务

yum install keepalived -y//修改keepalived配置文件
vim /etc/keepalived/keepalived.conf
! Configuration File for keepalivedglobal_defs {# 接收邮件地址notification_email {acassen@firewall.locfailover@firewall.locsysadmin@firewall.loc}# 邮件发送地址notification_email_from Alexandre.Cassen@firewall.locsmtp_server 127.0.0.1smtp_connect_timeout 30router_id NGINX_MASTER	#lb01节点的为 NGINX_MASTER,lb02节点的为 NGINX_BACKUP
}#添加一个周期性执行的脚本
vrrp_script check_nginx {script "/etc/nginx/check_nginx.sh"	#指定检查nginx存活的脚本路径
}vrrp_instance VI_1 {state MASTER			#lb01节点的为 MASTER,lb02节点的为 BACKUPinterface ens33			#指定网卡名称 ens33virtual_router_id 51	#指定vrid,两个节点要一致priority 100			#lb01节点的为 100,lb02节点的为 90advert_int 1authentication {auth_type PASSauth_pass 1111}virtual_ipaddress {192.168.174.100/24	#指定 VIP}track_script {check_nginx			#指定vrrp_script配置的脚本}
}

5.创建nginx状态检查脚本

vim /etc/nginx/check_nginx.sh
#!/bin/bash
#egrep -cv "grep|$$" 用于过滤掉包含grep 或者 $$ 表示的当前Shell进程ID,即脚本运行的当前进程ID号
count=$(ps -ef | grep nginx | egrep -cv "grep|$$")if [ "$count" -eq 0 ];thensystemctl stop keepalived
fichmod +x /etc/nginx/check_nginx.sh

6.启动keepalived服务(一定要先启动了nginx服务,再启动keepalived服务)

systemctl start keepalived
systemctl enable keepalived
ip a				#查看VIP是否生成

在这里插入图片描述

7.修改node节点上的bootstrap.kubeconfig,kubelet.kubeconfig配置文件为VIP

cd /opt/kubernetes/cfg/
vim bootstrap.kubeconfig 
server: https://192.168.174.100:6443vim kubelet.kubeconfig
server: https://192.168.174.100:6443vim kube-proxy.kubeconfig
server: https://192.168.174.100:6443

8.重启kubelet和kube-proxy服务

systemctl restart kubelet.service 
systemctl restart kube-proxy.service

9.在 lb01 上查看 nginx 和 node 、 master 节点的连接状态

netstat -natp | grep nginx

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/120442.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据可视化工具中的显眼包:奥威BI自带方案上阵

根据经验来看&#xff0c;BI数据可视化分析项目是由BI数据可视化工具和数据分析方案两大部分共同组成&#xff0c;且大多数时候方案都需从零开始&#xff0c;反复调整&#xff0c;会耗费大量时间精力成本。而奥威BI数据可视化工具别具匠心&#xff0c;将17年经验凝聚成标准化、…

【juc】ReentrantReadWriteLock之缓存(仅当学习)

目录 一、说明二、代码示例2.1 pom依赖2.2 示例代码2.3 实体类 三、示例截图 一、说明 1.针对于读多写少的情况 2.先查缓存&#xff0c;没有再去查库 二、代码示例 2.1 pom依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"h…

文心一言api接入如何在你的项目里使用文心一言

文心一言api接入在项目里接入文心一言 一、百度文心一言API二、使用步骤1、接口2、请求参数3、请求参数示例4、接口 返回示例 三、 如何获取appKey和uid1、申请appKey:2、获取appKey和uid 四、重要说明 一、百度文心一言API 基于百度文心一言语言大模型的智能文本对话AI机器人…

Linux代码初试__进度条

前言 在我们的日常生活中&#xff0c;进度条是十分常见的&#xff0c;比如在软件下载中&#xff0c;应用加载中等等~~~那么进度条有什么特点&#xff1f;他又如何实现。 下面我们将结合下面的图展开讲解 一、前置理论知识 1.1回车和换行的区别 在我们的日常生活中&#x…

Android Studio新版本New UI及相关设置丨遥遥领先版

1、前言 俗话说工欲善其事必先利其器嘛&#xff0c;工具用不好怎么行呢&#xff0c;借着Android Studio的更新&#xff0c;介绍一下新版本中的更新内容&#xff0c;以及日常开发中那些好用的设置。 2、关于新版本 2.1、最新正式版本 Android Studio Giraffe | 2022.3.1 Pat…

FreeRTOS中断与任务之间同步(Error:..\..\FreeRTOS\portable\RVDS\ARM_CM4F\port.c,422 )

前言&#xff1a; FreeRTOS中&#xff0c;中断需要注意几点&#xff1a; 何时使用中断&#xff1b;中断服务函数&#xff08;ISR&#xff09;要处理的数据量有多大&#xff0c;通常我们希望中断的切换越快越好&#xff0c;也就是说&#xff0c;ISR尽量采用耗时较少的处理方式…

YOLO目标检测——赛马数据集下载分享

目标检测赛马数据集在马匹竞赛、马匹健康监测、马匹行为研究、马匹安全监控和马匹图像检索等应用场景中具有广泛的应用潜力&#xff0c;可以为马匹产业的发展和管理提供有力支持 数据集点击下载&#xff1a;YOLO赛马数据集640图片标框.rar 更多数据集下载和效果展示&#x…

论文研读|生成式跨模态隐写发展综述

前言&#xff1a;本文介绍近5年来生成式跨模态隐写领域的相关工作。 相关阅读&#xff1a;生成式文本隐写发展综述 不同于文本隐写&#xff0c;跨模态隐写需要考虑不同模态间的相关性&#xff0c;常见的跨模态场景有&#xff1a;Image-to-Text&#xff08;如图像描述&#xff…

安全编程:初始化那些你忽略掉的东西

对于黑客来说&#xff0c;特权提升漏洞是令他感到非常兴奋的事情&#xff0c;而有时候这种漏洞的来源仅仅是因为开发者忘记将内存缓冲区中的垃圾数据进行初始化。此话怎讲&#xff1f; 我想&#xff0c;现在每个人都应该熟悉 SecureZeroMemory 函数的使用&#xff0c;它用来擦…

【TypeScript】一直提示 :无法重新声明块范围变量

【TypeScript】一直提示 &#xff1a;无法重新声明块范围变量 问题描述&#xff1a;在VSCode中编写ts代码时&#xff0c;编写保存完之后&#xff0c;通过tsc 文件名.ts编译就会看到变量名下面出现了红色的波浪线&#xff0c;提示的内容是无法重新声明块范围变量。 解决方法&am…

基于RabbitMQ的模拟消息队列之五——虚拟主机设计

文章目录 一、创建VirtualHost类二、初始化三、API1.创建交换机2.删除交换机3.创建队列4.删除队列5.创建绑定6.删除绑定7.发送消息转发规则 8.订阅消息1.消费者管理2.推送消息给消费者 3.添加一个消费者管理ConsumerManager9.确认消息 创建VirtualHost类。 1.串起内存和硬盘的数…

安全基础 --- js的闭包和this属性

js闭包 简介 一个函数和对其周围状态&#xff08;lexical exviroment&#xff0c;词法环境&#xff09;的引用捆绑在一起&#xff08;或者说函数被引用包围&#xff09;&#xff0c;这样的组合就是闭包&#xff08;closure&#xff09; 在js中&#xff0c;通俗来讲&#xff0c…

uni-app 之 安装uView,安装scss/sass编译

uni-app 之 安装uView&#xff0c;安装scss/sass编译 image.png image.png image.png 点击HBuilder X 顶部&#xff0c;工具&#xff0c;插件安装&#xff0c;安装新插件 image.png image.png 安装成功&#xff01; 注意&#xff0c;一定要先登录才可以安装 image.png 1. 引…

【数据分析】用Python秒懂概率分布!(附完整Python代码实现)

本文涉及的概念分布包括&#xff1a; 随机变量(Random Variable) 密度函数(Density Functions) 伯努利分布(Bernoulli Distribution) 二项式分布(Binomial Distribution) 均匀分布(Uniform Distribution) 泊松分布(Poisson Distribution) 正态分布(Normal Distribution) …

ChatGPT AIGC 完成动态堆积面积图实例

先使用ChatGPT AIGC描述一下堆积面积图的功能与作用。 接下来一起看一下ChatGPT做出的动态可视化效果图: 这样的动态图案例代码使用ChatGPT AIGC完成。 将完整代码复制如下: <!DOCTYPE html> <html> <head><meta charset="utf-8"><tit…

阿里云大数据实战记录9:MaxCompute RAM 用户与授权

文章目录 问题来源&#xff1a;maxcompute 管理员无法访问敏感列&#xff1f;主线问题&#xff1a;如何提高用户等级衍生问题1&#xff1a;怎么知道自己的等级和表单的等级衍生问题2&#xff1a;为什么 dataworks 空间管理员也没有设置等级的权限&#xff1f;衍生问题3&#xf…

模板和STL简介

模板和STL简介 一、泛型编程1、通用交换函数的实现&#xff08;1&#xff09;代码&#xff08;2&#xff09;总结 2、泛型编程的概念3、模板的概念 二、函数模板1、概念2、格式3、代码4、原理 三、函数模板实例化1、概念2、隐式实例化&#xff08;1&#xff09;概念&#xff08…

[unity]三角形顶点顺序

序 详见官方文档&#xff1a;Unity - Manual: Mesh data (unity3d.com) Topology&#xff1a;拓扑结构 翻译&#xff1a; 拓扑描述网格具有的面类型。 网格的拓扑定义了索引缓冲区的结构&#xff0c;索引缓冲区又描述了顶点位置如何组合成面。每种类型的拓扑都使用索引数组中…

医院安全(不良)事件上报系统源码 不良事件报告平台源码 前后端分离,支持二开

医院安全&#xff08;不良&#xff09;事件上报系统源码 系统定义&#xff1a; 规范医院安全&#xff08;不良&#xff09;事件的主动报告&#xff0c;增强风险防范意识&#xff0c;及时发现医院不良事件和安全隐患&#xff0c;将获取的医院安全信息进行分析反馈&#xff0c;…

Nacos 开源版的使用测评

文章目录 一、Nacos的使用二、Nacos和Eureka在性能、功能、控制台体验、上下游生态和社区体验的对比&#xff1a;三、记使使用Nacos中容易犯的错误四、对Nacos开源提出的一些需求 一、Nacos的使用 这里配置mysql的连接方式&#xff0c;spring.datasource.platformmysql是老版本…