计算机竞赛 基于深度学习的中文情感分类 - 卷积神经网络 情感分类 情感分析 情感识别 评论情感分类

文章目录

  • 1 前言
  • 2 情感文本分类
    • 2.1 参考论文
    • 2.2 输入层
    • 2.3 第一层卷积层:
    • 2.4 池化层:
    • 2.5 全连接+softmax层:
    • 2.6 训练方案
  • 3 实现
    • 3.1 sentence部分
    • 3.2 filters部分
    • 3.3 featuremaps部分
    • 3.4 1max部分
    • 3.5 concat1max部分
    • 3.6 关键代码
  • 4 实现效果
    • 4.1 测试英文情感分类效果
    • 4.2 测试中文情感分类效果
  • 5 调参实验结论
  • 6 建议
  • 7 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的中文情感分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 情感文本分类

2.1 参考论文

Convolutional Neural Networks for Sentence
Classification

模型结构

在这里插入图片描述

在短文本分析任务中,由于句子句长长度有限、结构紧凑、能够独立表达意思,使得CNN在处理这一类问题上成为可能,主要思想是将ngram模型与卷积操作结合起来

2.2 输入层

如图所示,输入层是句子中的词语对应的wordvector依次(从上到下)排列的矩阵,假设句子有 n 个词,vector的维数为 k ,那么这个矩阵就是 n
× k 的(在CNN中可以看作一副高度为n、宽度为k的图像)。

这个矩阵的类型可以是静态的(static),也可以是动态的(non static)。静态就是word
vector是固定不变的,而动态则是在模型训练过程中,word vector也当做是可优化的参数,通常把反向误差传播导致word
vector中值发生变化的这一过程称为Fine tune。(这里如果word
vector如果是随机初始化的,不仅训练得到了CNN分类模型,还得到了word2vec这个副产品了,如果已经有训练的word
vector,那么其实是一个迁移学习的过程)

对于未登录词的vector,可以用0或者随机小的正数来填充。

2.3 第一层卷积层:

输入层通过卷积操作得到若干个Feature Map,卷积窗口的大小为 h ×k ,其中 h 表示纵向词语的个数,而 k 表示word
vector的维数。通过这样一个大型的卷积窗口,将得到若干个列数为1的Feature Map。(熟悉NLP中N-GRAM模型的读者应该懂得这个意思)。

2.4 池化层:

接下来的池化层,文中用了一种称为Max-over-timePooling的方法。这种方法就是简单地从之前一维的Feature
Map中提出最大的值,文中解释最大值代表着最重要的信号。可以看出,这种Pooling方式可以解决可变长度的句子输入问题(因为不管Feature
Map中有多少个值,只需要提取其中的最大值)。最终池化层的输出为各个Feature Map的最大值们,即一个一维的向量。

2.5 全连接+softmax层:

池化层的一维向量的输出通过全连接的方式,连接一个Softmax层,Softmax层可根据任务的需要设置(通常反映着最终类别上的概率分布)。

2.6 训练方案

在倒数第二层的全连接部分上使用Dropout技术,Dropout是指在模型训练时随机让网络某些隐含层节点的权重不工作,不工作的那些节点可以暂时认为不是网络结构的一部分,但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了,它是防止模型过拟合的一种常用的trikc。同时对全连接层上的权值参数给予L2正则化的限制。这样做的好处是防止隐藏层单元自适应(或者对称),从而减轻过拟合的程度。

在样本处理上使用minibatch方式来降低一次模型拟合计算量,使用shuffle_batch的方式来降低各批次输入样本之间的相关性(在机器学习中,如果训练数据之间相关性很大,可能会让结果很差、泛化能力得不到训练、这时通常需要将训练数据打散,称之为shuffle_batch)。

3 实现

在这里插入图片描述
我们以上图为例,图上用红色标签标注了5部分,结合这5个标签,具体解释下整个过程的操作,来看看CNN如何解决文本分类问题的。

3.1 sentence部分

上图句子为“[I like this movie very much!”
,一共有两个单词加上一个感叹号,关于这个标点符号,不同学者有不同的操作,比如去除标点符号。在这里我们先不去除,那么整个句子有7个词,词向量维度为5,那么整个句子矩阵大小为7x5

3.2 filters部分

filters的区域大小可以使不同的,在这里取(2,3,4)3种大小,每种大小的filter有两个不同的值的filter,所以一共是有6个filter。

3.3 featuremaps部分

我们在句子矩阵和过滤器矩阵填入一些值,那么我们可以更好理解卷积计算过程,这和CNN原理那篇文章一样

在这里插入图片描述

比如我们取大小为2的filter,最开始与句子矩阵的前两行做乘积相加,得到0.6 x 0.2 + 0.5 x 0.1 + … + 0.1 x 0.1 =
0.51,然后将filter向下移动1个位置得到0.53.最终生成的feature map大小为(7-2+1x1)=6。
为了获得feature map,我们添加一个bias项和一个激活函数,比如Relu

3.4 1max部分

因为不同大小的filter获取到的feature map大小也不一样,为了解决这个问题,然后添加一层max-
pooling,选取一个最大值,相同大小的组合在一起

3.5 concat1max部分

经过max-pooling操作之后,我们将固定长度的向量给sofamax,来预测文本的类别。

3.6 关键代码

下面是利用Keras实现的CNN文本分类部分代码:

# 创建tensorprint("正在创建模型...")inputs=Input(shape=(sequence_length,),dtype='int32')embedding=Embedding(input_dim=vocabulary_size,output_dim=embedding_dim,input_length=sequence_length)(inputs)reshape=Reshape((sequence_length,embedding_dim,1))(embedding)# cnnconv_0=Conv2D(num_filters,kernel_size=(filter_sizes[0],embedding_dim),padding='valid',kernel_initializer='normal',activation='relu')(reshape)conv_1=Conv2D(num_filters,kernel_size=(filter_sizes[1],embedding_dim),padding='valid',kernel_initializer='normal',activation='relu')(reshape)conv_2=Conv2D(num_filters,kernel_size=(filter_sizes[2],embedding_dim),padding='valid',kernel_initializer='normal',activation='relu')(reshape)maxpool_0=MaxPool2D(pool_size=(sequence_length-filter_sizes[0]+1,1),strides=(1,1),padding='valid')(conv_0)maxpool_1=MaxPool2D(pool_size=(sequence_length-filter_sizes[1]+1,1),strides=(1,1),padding='valid')(conv_1)maxpool_2=MaxPool2D(pool_size=(sequence_length-filter_sizes[2]+1,1),strides=(1,1),padding='valid')(conv_2)concatenated_tensor = Concatenate(axis=1)([maxpool_0, maxpool_1, maxpool_2])flatten = Flatten()(concatenated_tensor)dropout = Dropout(drop)(flatten)output = Dense(units=2, activation='softmax')(dropout)model=Model(inputs=inputs,outputs=output)**main.py**import osos.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"   # see issue #152os.environ["CUDA_VISIBLE_DEVICES"] = ""import reimport numpy as npfrom flask import Flask, render_template, requestfrom keras.models import load_modelfrom data_helpers_english import build_input_englishfrom data_helpers_chinese import build_input_chineseapp = Flask(__name__)en_model = load_model('results/weights.007-0.7618.hdf5')ch_model = load_model('results/chinese.weights.003-0.9083.hdf5')# load 进来模型紧接着就执行一次 predict 函数print('test train...')print(en_model.predict(np.zeros((1, 56))))print(ch_model.predict(np.zeros((1, 50))))print('test done.')def en_predict(input_x):sentence = input_xinput_x = build_input_english(input_x)y_pred = en_model.predict(input_x)result = list(y_pred[0])result = {'sentence': sentence, 'positive': result[1], 'negative': result[0]}return resultdef ch_predict(input_x):sentence = input_xinput_x = build_input_chinese(input_x)y_pred = ch_model.predict(input_x)result = list(y_pred[0])result = {'sentence': sentence, 'positive': result[1], 'negative': result[0]}return result@app.route('/classification', methods=['POST', 'GET'])def english():if request.method == 'POST':review = request.form['review']# 来判断是中文句子/还是英文句子review_flag = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", review)  # 去除数字review_flag = re.sub("[\s+\.\!\/_,$%^*(+\"\')]+|[+——()?【】“”!,。?、~@#¥%……&*()]+", "", review_flag)if review_flag:result = en_predict(review)# result = {'sentence': 'hello', 'positive': '03.87878', 'negative': '03.64465'}return render_template('index.html', result=result)else:result = ch_predict(review)# result = {'sentence': 'hello', 'positive': '03.87878', 'negative': '03.64465'}return render_template('index.html', result=result)return render_template('index.html')## if __name__ == '__main__':#     app.run(host='0.0.0.0', debug=True)

4 实现效果

4.1 测试英文情感分类效果

在这里插入图片描述
准训练结果:验证集76%左右

4.2 测试中文情感分类效果

在这里插入图片描述

准训练结果:验证集91%左右

5 调参实验结论

  • 由于模型训练过程中的随机性因素,如随机初始化的权重参数,mini-batch,随机梯度下降优化算法等,造成模型在数据集上的结果有一定的浮动,如准确率(accuracy)能达到1.5%的浮动,而AUC则有3.4%的浮动;
  • 词向量是使用word2vec还是GloVe,对实验结果有一定的影响,具体哪个更好依赖于任务本身;
  • Filter的大小对模型性能有较大的影响,并且Filter的参数应该是可以更新的;
  • Feature Map的数量也有一定影响,但是需要兼顾模型的训练效率;
  • 1-max pooling的方式已经足够好了,相比于其他的pooling方式而言;
  • 正则化的作用微乎其微。

6 建议

  • 使用non-static版本的word2vec或者GloVe要比单纯的one-hot representation取得的效果好得多;
  • 为了找到最优的过滤器(Filter)大小,可以使用线性搜索的方法。通常过滤器的大小范围在1-10之间,当然对- 于长句,使用更大的过滤器也是有必要的;
  • Feature Map的数量在100-600之间;
  • 可以尽量多尝试激活函数,实验发现ReLU和tanh两种激活函数表现较佳;
  • 使用简单的1-max pooling就已经足够了,可以没必要设置太复杂的pooling方式;
  • 当发现增加Feature Map的数量使得模型的性能下降时,可以考虑增大正则的力度,如调高dropout的概率;
  • 为了检验模型的性能水平,多次反复的交叉验证是必要的,这可以确保模型的高性能并不是偶然。

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/121033.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小白学go基础03-了解Go项目的项目结构

我们先来看看第一个Go项目——Go语言自身——的项目结构是什么样的。Go项目的项目结构自1.0版本发布以来一直十分稳定,直到现在Go项目的顶层结构基本没有大的改变。 截至Go项目commit 1e3ffb0c(2019.5.14),Go1.0 项目结构如下&am…

Ansible学习笔记15

1、roles:(难点) roles介绍: roles(角色):就是通过分别将variables,tasks及handlers等放置于单独的目录中,并可以便捷地调用他们的一种机制。 假设我们要写一个playbo…

KaTex用法

KaTeX是一个用于数学公式渲染的JavaScript库&#xff0c;可以在网页上方便地显示数学符号和公式。下面是KaTeX的使用方法&#xff1a; 在网页中引入KaTeX的CSS和JS文件&#xff1a; <link rel"stylesheet" href"https://cdnjs.cloudflare.com/ajax/libs/Ka…

【真题解析】系统集成项目管理工程师 2023 年上半年真题卷(综合知识)

本文为系统集成项目管理工程师考试(软考) 2023 年上半年真题(全国卷),包含答案与详细解析。考试共分为两科,成绩均 ≥45 即可通过考试: 综合知识(选择题 75 道,75分)案例分析(问答题 4 道,75分)综合知识(选择题*75)1-10 题11-20 题21-30 题31-40 题41-50 题51-60 …

webpack(三)loader

定义 loader用于对模块的源代码进行转换&#xff0c;在imporrt或加载模块时预处理文件 webpack做的事情&#xff0c;仅仅是分析出各种模块的依赖关系&#xff0c;然后形成资源列表&#xff0c;最终打包生成到指定文件中。 在webpack内部&#xff0c;任何文件都是模块&#x…

VBA技术资料MF52:VBA_在Excel中突出显示前 10 个值

【分享成果&#xff0c;随喜正能量】一言之善&#xff0c;重于千金。善良不分大小&#xff0c;有时候你以为的一句话&#xff0c;小小的举手之劳&#xff0c;也可能就是别人的救赎&#xff01;不要吝啬你的善良&#xff0c;因为你永远不知道那小小的善良能给多少人带来光明。。…

大厂面试 | 百度一面,顶不住

题目来源&#xff1a;https://www.nowcoder.com/feed/main/detail/d39aabc0debd4dba810b4b9671d54348 前文 本期是【捞捞面经】系列文章的第 2 期&#xff0c;持续更新中…。&#xff08;更多与往期下方仓库直达&#xff09; 《捞捞面经》系列正式开始连载啦&#xff0c;据说看…

2023年7月婴幼儿辅食市场数据分析(京东商品数据)

随着人们对婴幼儿饮食健康的关注不断增加&#xff0c;市场对高品质、安全、营养丰富的辅食需求也日益旺盛。婴幼儿辅食市场增长放缓&#xff0c;但整体仍保持上升态势。鲸参谋数据显示&#xff0c;今年7月份&#xff0c;京东平台婴幼儿辅食市场的销量为1000万&#xff0c;同比增…

分布式环境下的数据同步

一般而言elasticsearch负责搜索&#xff08;查询&#xff09;&#xff0c;而sql数据负责记录&#xff08;增删改&#xff09;&#xff0c;elasticsearch中的数据来自于sql数据库&#xff0c;因此sql数据发生改变时&#xff0c;elasticsearch也必须跟着改变&#xff0c;这个就是…

NS2安装及入门实例——(ns2.35 / Ubuntu20.04)

文章目录 一、ns2安装1、更新系统源2、准备工作3、下载安装包4、安装5、问题① 问题1② 问题2③ 问题3 6、安装成功7、环境配置 二、nam安装1、安装2、问题 三、实例 一、ns2安装 1、更新系统源 sudo apt-get update sudo apt-get upgrade2、准备工作 sudo apt-get install …

5个强大的Java分布式缓存框架推荐

在开发中大型Java软件项目时&#xff0c;很多Java架构师都会遇到数据库读写瓶颈&#xff0c;如果你在系统架构时并没有将缓存策略考虑进去&#xff0c;或者并没有选择更优的缓存策略&#xff0c;那么到时候重构起来将会是一个噩梦。 在开发中大型Java软件项目时&#xff0c;很…

LeetCode 2511 最多可以摧毁的敌人城堡数目

LeetCode 2511 最多可以摧毁的敌人城堡数目 力扣题目链接&#xff1a;力扣题目链接 给你一个长度为 n &#xff0c;下标从 0 开始的整数数组 forts &#xff0c;表示一些城堡。forts[i] 可以是 -1 &#xff0c;0 或者 1 &#xff0c;其中&#xff1a; -1 表示第 i 个位置 没…

sql:SQL优化知识点记录(九)

&#xff08;1&#xff09;小表驱动大表 对sql调优的分析&#xff1a; 排序优化&#xff1a; 数据库的连接方式&#xff0c;里面的数据尽量这样连接&#xff0c;尽量选择第一个方式&#xff0c;因为两个表的连接一共建立5次连接&#xff0c;第二个建立1000次连接&#xff0c;从…

Matlab中fdatool结合STM32F4设计滤波器

数字滤波器的原理 1.从功能上分&#xff1b;低通、带通、高通、带阻。滤波器口诀&#xff1a;低通滤高频&#xff1b;高通滤低频&#xff1b;带通滤两边&#xff1b;带阻阻中间&#xff1b; 2.从实现方法上分:FIR、IIR 3.从设计方法上来分&#xff1a;Chebyshev(切比雪夫&…

准备HarmonyOS开发环境

引言 在开始 HarmonyOS 开发之前&#xff0c;需要准备好开发环境。本章将详细指导你如何安装 HarmonyOS SDK、配置开发环境、创建 HarmonyOS 项目。 目录 安装 HarmonyOS SDK 配置开发环境 创建 HarmonyOS 项目 总结 1. 安装 HarmonyOS SDK HarmonyOS SDK 是开发 Harmo…

Springboot 实践(13)spring boot 整合RabbitMq

前文讲解了RabbitMQ的下载和安装&#xff0c;此文讲解springboot整合RabbitMq实现消息的发送和消费。 1、创建web project项目&#xff0c;名称为“SpringbootAction-RabbitMQ” 2、修改pom.xml文件&#xff0c;添加amqp使用jar包 <!-- RabbitMQ --> <dependency&g…

电压互感器倍频感应耐压试验方法

试验方法 升压设备的容器应足够&#xff0c; 试验前应确认高压升压等设备功能正常&#xff1b; 按上图接好线&#xff0c; 三倍频发生器、 高压器外壳必须可靠接地。 将三倍频电源发生装置的输出线与被试电压互感器的一组二次绕组接线端连接好&#xff08;如 a-n 端&#xff0…

Spring MVC 五 - Spring MVC的配置和DispatcherServlet初始化过程

今天的内容是SpringMVC的初始化过程&#xff0c;其实也就是DispatcherServilet的初始化过程。 Special Bean Types DispatcherServlet委托如下一些特殊的bean来处理请求、并渲染正确的返回。这些特殊的bean是Spring MVC框架管理的bean、按照Spring框架的约定处理相关请求&…

2D项目经验总结

2D项目经验总结 前言地图的绘制Sprite Editor叠层注意点&#xff08;SortingLayer相关知识点&#xff09;Tile Paltette的使用Animated Tiles&#xff08;动起来的图片&#xff08;也称作瓷片或者瓦砖&#xff09;&#xff09; 玩家移动玩家方向的翻转刚体注意点 碰撞器输入系统…

手写Mybatis:第19章-二级缓存

文章目录 一、目标&#xff1a;二级缓存二、设计&#xff1a;二级缓存三、实现&#xff1a;二级缓存3.1 工程结构3.2 二级缓存类图3.3 二级缓存队列3.3.1 FIFI缓存策略3.3.2 事务缓存3.3.3 事务管理3.3.4 修改一级缓存 3.4 缓存执行器3.4.1 执行器接口3.4.2 执行器抽象基类3.4.…