计算机竞赛 基于深度学习的人脸识别系统

前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的人脸识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

机器学习-人脸识别过程

基于传统图像处理和机器学习技术的人脸识别技术,其中的流程都是一样的。

机器学习-人脸识别系统都包括:

  • 人脸检测
  • 人脸对其
  • 人脸特征向量化
  • 人脸识别
    在这里插入图片描述

人脸检测

人脸检测用于确定人脸在图像中的大小和位置,即解决“人脸在哪里”的问题,把真正的人脸区域从图像中裁剪出来,便于后续的人脸特征分析和识别。下图是对一张图像的人脸检测结果:

在这里插入图片描述

人脸对其

同一个人在不同的图像序列中可能呈现出不同的姿态和表情,这种情况是不利于人脸识别的。

所以有必要将人脸图像都变换到一个统一的角度和姿态,这就是人脸对齐。

它的原理是找到人脸的若干个关键点(基准点,如眼角,鼻尖,嘴角等),然后利用这些对应的关键点通过相似变换(Similarity
Transform,旋转、缩放和平移)将人脸尽可能变换到标准人脸。

下图是一个典型的人脸图像对齐过程:
在这里插入图片描述
这幅图就更加直观了:
在这里插入图片描述

人脸特征向量化

这一步是将对齐后的人脸图像,组成一个特征向量,该特征向量用于描述这张人脸。

但由于,一幅人脸照片往往由比较多的像素构成,如果以每个像素作为1维特征,将得到一个维数非常高的特征向量, 计算将十分困难;而且这些像素之间通常具有相关性。

所以我们常常利用PCA技术对人脸描述向量进行降维处理,保留数据集中对方差贡献最大的人脸特征来达到简化数据集的目的

PCA人脸特征向量降维示例代码:

#coding:utf-8
from numpy import *
from numpy import linalg as la
import cv2
import osdef loadImageSet(add):FaceMat = mat(zeros((15,98*116)))j =0for i in os.listdir(add):if i.split('.')[1] == 'normal':try:img = cv2.imread(add+i,0)except:print 'load %s failed'%iFaceMat[j,:] = mat(img).flatten()j += 1return FaceMatdef ReconginitionVector(selecthr = 0.8):# step1: load the face image data ,get the matrix consists of all imageFaceMat = loadImageSet('D:\python/face recongnition\YALE\YALE\unpadded/').T# step2: average the FaceMatavgImg = mean(FaceMat,1)# step3: calculate the difference of avgimg and all image data(FaceMat)diffTrain = FaceMat-avgImg#step4: calculate eigenvector of covariance matrix (because covariance matrix will cause memory error)eigvals,eigVects = linalg.eig(mat(diffTrain.T*diffTrain))eigSortIndex = argsort(-eigvals)for i in xrange(shape(FaceMat)[1]):if (eigvals[eigSortIndex[:i]]/eigvals.sum()).sum() >= selecthr:eigSortIndex = eigSortIndex[:i]breakcovVects = diffTrain * eigVects[:,eigSortIndex] # covVects is the eigenvector of covariance matrix# avgImg 是均值图像,covVects是协方差矩阵的特征向量,diffTrain是偏差矩阵return avgImg,covVects,diffTraindef judgeFace(judgeImg,FaceVector,avgImg,diffTrain):diff = judgeImg.T - avgImgweiVec = FaceVector.T* diffres = 0resVal = inffor i in range(15):TrainVec = FaceVector.T*diffTrain[:,i]if  (array(weiVec-TrainVec)**2).sum() < resVal:res =  iresVal = (array(weiVec-TrainVec)**2).sum()return res+1if __name__ == '__main__':avgImg,FaceVector,diffTrain = ReconginitionVector(selecthr = 0.9)nameList = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15']characteristic = ['centerlight','glasses','happy','leftlight','noglasses','rightlight','sad','sleepy','surprised','wink']for c in characteristic:count = 0for i in range(len(nameList)):# 这里的loadname就是我们要识别的未知人脸图,我们通过15张未知人脸找出的对应训练人脸进行对比来求出正确率loadname = 'D:\python/face recongnition\YALE\YALE\unpadded\subject'+nameList[i]+'.'+c+'.pgm'judgeImg = cv2.imread(loadname,0)if judgeFace(mat(judgeImg).flatten(),FaceVector,avgImg,diffTrain) == int(nameList[i]):count += 1print 'accuracy of %s is %f'%(c, float(count)/len(nameList))  # 求出正确率

人脸识别

这一步的人脸识别,其实是对上一步人脸向量进行分类,使用各种分类算法。

比如:贝叶斯分类器,决策树,SVM等机器学习方法。

从而达到识别人脸的目的。

这里分享一个svm训练的人脸识别模型:

from __future__ import print_functionfrom time import timeimport loggingimport matplotlib.pyplot as pltfrom sklearn.cross_validation import train_test_splitfrom sklearn.datasets import fetch_lfw_peoplefrom sklearn.grid_search import GridSearchCVfrom sklearn.metrics import classification_reportfrom sklearn.metrics import confusion_matrixfrom sklearn.decomposition import RandomizedPCAfrom sklearn.svm import SVCprint(__doc__)# Display progress logs on stdoutlogging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')################################################################################ Download the data, if not already on disk and load it as numpy arrayslfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)# introspect the images arrays to find the shapes (for plotting)n_samples, h, w = lfw_people.images.shape# for machine learning we use the 2 data directly (as relative pixel# positions info is ignored by this model)X = lfw_people.datan_features = X.shape[1]# the label to predict is the id of the persony = lfw_people.targettarget_names = lfw_people.target_namesn_classes = target_names.shape[0]print("Total dataset size:")print("n_samples: %d" % n_samples)print("n_features: %d" % n_features)print("n_classes: %d" % n_classes)################################################################################ Split into a training set and a test set using a stratified k fold# split into a training and testing setX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)################################################################################ Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled# dataset): unsupervised feature extraction / dimensionality reductionn_components = 80print("Extracting the top %d eigenfaces from %d faces"% (n_components, X_train.shape[0]))t0 = time()pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)print("done in %0.3fs" % (time() - t0))eigenfaces = pca.components_.reshape((n_components, h, w))print("Projecting the input data on the eigenfaces orthonormal basis")t0 = time()X_train_pca = pca.transform(X_train)X_test_pca = pca.transform(X_test)print("done in %0.3fs" % (time() - t0))################################################################################ Train a SVM classification modelprint("Fitting the classifier to the training set")t0 = time()param_grid = {'C': [1,10, 100, 500, 1e3, 5e3, 1e4, 5e4, 1e5],'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)clf = clf.fit(X_train_pca, y_train)print("done in %0.3fs" % (time() - t0))print("Best estimator found by grid search:")print(clf.best_estimator_)print(clf.best_estimator_.n_support_)################################################################################ Quantitative evaluation of the model quality on the test setprint("Predicting people's names on the test set")t0 = time()y_pred = clf.predict(X_test_pca)print("done in %0.3fs" % (time() - t0))print(classification_report(y_test, y_pred, target_names=target_names))print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))################################################################################ Qualitative evaluation of the predictions using matplotlibdef plot_gallery(images, titles, h, w, n_row=3, n_col=4):"""Helper function to plot a gallery of portraits"""plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)for i in range(n_row * n_col):plt.subplot(n_row, n_col, i + 1)# Show the feature faceplt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)plt.title(titles[i], size=12)plt.xticks(())plt.yticks(())# plot the result of the prediction on a portion of the test setdef title(y_pred, y_test, target_names, i):pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]return 'predicted: %s\ntrue:      %s' % (pred_name, true_name)prediction_titles = [title(y_pred, y_test, target_names, i)for i in range(y_pred.shape[0])]plot_gallery(X_test, prediction_titles, h, w)# plot the gallery of the most significative eigenfaceseigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]plot_gallery(eigenfaces, eigenface_titles, h, w)plt.show()

深度学习-人脸识别过程

不同于机器学习模型的人脸识别,深度学习将人脸特征向量化,以及人脸向量分类结合到了一起,通过神经网络算法一步到位。

深度学习-人脸识别系统都包括:

  • 人脸检测
  • 人脸对其
  • 人脸识别

人脸检测

深度学习在图像分类中的巨大成功后很快被用于人脸检测的问题,起初解决该问题的思路大多是基于CNN网络的尺度不变性,对图片进行不同尺度的缩放,然后进行推理并直接对类别和位置信息进行预测。另外,由于对feature
map中的每一个点直接进行位置回归,得到的人脸框精度比较低,因此有人提出了基于多阶段分类器由粗到细的检测策略检测人脸,例如主要方法有Cascade CNN、
DenseBox和MTCNN等等。

MTCNN是一个多任务的方法,第一次将人脸区域检测和人脸关键点检测放在了一起,与Cascade
CNN一样也是基于cascade的框架,但是整体思路更加的巧妙合理,MTCNN总体来说分为三个部分:PNet、RNet和ONet,网络结构如下图所示。

在这里插入图片描述

人脸识别

人脸识别问题本质是一个分类问题,即每一个人作为一类进行分类检测,但实际应用过程中会出现很多问题。第一,人脸类别很多,如果要识别一个城镇的所有人,那么分类类别就将近十万以上的类别,另外每一个人之间可获得的标注样本很少,会出现很多长尾数据。根据上述问题,要对传统的CNN分类网络进行修改。

我们知道深度卷积网络虽然作为一种黑盒模型,但是能够通过数据训练的方式去表征图片或者物体的特征。因此人脸识别算法可以通过卷积网络提取出大量的人脸特征向量,然后根据相似度判断与底库比较完成人脸的识别过程,因此算法网络能不能对不同的人脸生成不同的特征,对同一人脸生成相似的特征,将是这类embedding任务的重点,也就是怎么样能够最大化类间距离以及最小化类内距离。

Metric Larning

深度学习中最先应用metric
learning思想之一的便是DeepID2了。其中DeepID2最主要的改进是同一个网络同时训练verification和classification(有两个监督信号)。其中在verification
loss的特征层中引入了contrastive loss。

Contrastive
loss不仅考虑了相同类别的距离最小化,也同时考虑了不同类别的距离最大化,通过充分运用训练样本的label信息提升人脸识别的准确性。因此,该loss函数本质上使得同一个人的照片在特征空间距离足够近,不同人在特征空间里相距足够远直到超过某个阈值。(听起来和triplet
loss有点像)。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/122252.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【web开发】1、flask入门和html开发

文章目录 一、前端三剑客是什么&#xff1f;二、快速开发网站1.安装flask2.根目录下创建templates目录及web.py文件 三、HTML3.1常用标签3.2列表标签3.3表格标签3.4INPUT系列&#xff08;7个&#xff09;3.5下拉框3.6多行文本3.7案例&#xff1a;用户注册页面 一、前端三剑客是…

机器人中的数值优化(八)——拟牛顿方法(上)

本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考&#xff0c;主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等&#xff0c;本系列文章篇数较多&#xff0c;不定期更新&#xff0c;上半部分介绍无约束优化&#xff0c;…

Google colab 基于BERTopic 特朗普推文的动态主题建模

目录 动态主题模型 下载 BERTopic 数据处理 基本主题模型 随时间推移的主题 注意参数 docs timestamps global_tuning evolution_tuning nr_bins 随时间推移可视化主题 我们将使用动态主题建模和BERTopic来可视化特朗普推文中的主题如何随着时间的推移而演变。这些…

elementUI可拖拉宽度抽屉

1&#xff0c;需求&#xff1a; 在elementUI的抽屉基础上&#xff0c;添加可拖动侧边栏宽度的功能&#xff0c;实现效果如下&#xff1a; 2&#xff0c;在原组件上添加自定义命令 <el-drawer v-drawerDrag"left" :visible.sync"drawerVisible" direc…

Linux图形栈入门概念

Mesa在图形栈中的位置 游戏引擎&#xff1a; 游戏引擎指的是一种软件框架&#xff0c;通过编程和各种工具&#xff0c;帮助开发者设计、构建和运行视频游戏。它相当于一个虚拟的世界创造工具&#xff0c;提供了各种功能模块和资源&#xff0c;如渲染引擎、物理引擎(碰撞检测、重…

【PowerQuery】PowerQuery学习路径

PowerQuery这么好,怎么去学习呢?相信很多初读本书的朋友迫切的希望了解整个PowerQuery全景知识和它提供的相应的功能。但是对于PowerQuery来说,一开始就会进行自定义函数的构建当然也是不可能的,这里有相应的学习路径来进行由浅入深的学习,帮助读者更好的理解PowerQuery的…

【PowerQuery】PowerQuery导入JSON数据

Json数据是目前使用的最为频繁和广泛的一种数据交换格式,JSON的全称为JavaScript Object Notation。Json 主要用于在互联网的消息的数据交换信息传递,他的格式与XML有什么区别呢?为什么不用XML,用Json有啥好处呢?我们接下来讨论下Json相比XML的优势: XML传递的数据过多服…

4.5V 至 23V、TAS2781RYYR音频放大器、QPF4617TR13 Wi-Fi® 6E非线性前端模块和DRV2667RGPR全集成压电式触觉驱动器

一、TAS2781RYYR&#xff0c;具有集成式音频处理和扬声器保护的 25W、4.5V 至 23V 数字输入 D 类放大器 介绍&#xff1a;TAS2781 是一款单声道、数字输入 D 类音频放大器&#xff0c;专为将高峰值功率高效率驱动到扬声器进行了优化。D类放大器在 18V 电源电压下可向 4Ω 负载…

idea查找maven所有依赖

文章目录 idea自带的依赖结构图idea安装maven helper插件 idea自带的依赖结构图 缺点是只有依赖&#xff0c;没有版本 idea安装maven helper插件 settings–>plugins–>搜索maven helper并安装 安装后打开pom.xml文件会有依赖解析 勾选conflict就是有冲突的依赖选中…

YOLOv5算法改进(10)— 替换主干网络之GhostNet

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。GhostNet是一种针对计算机视觉任务的深度神经网络架构&#xff0c;它于2020年由中国科学院大学的研究人员提出。GhostNet的设计目标是在保持高精度的同时&#xff0c;减少模型的计算和存储成本。GhostNet通过引入Ghost模块…

Ubuntu22.04上下左右全方位美化教程

Ubuntu22.04上下左右全方位美化教程 以Plank替代Dock甲板安装使用优化除了Plank之外还有Ubuntu-Launchpad可以替代Dock Tweak-Tool配置主题Theme的配置下载解压配置 Icon文件夹显示风格的配置Cursors鼠标风格优化Background背景、Lock锁屏以及登陆页面的更换过渡动画配置安装 E…

大数据的关键技术之——大数据采集

大数据的关键技术之——大数据采集 本文目录&#xff1a; 一、写在前面的话 二、大数据采集概念 三、大数据采集步骤 3.1、大数据采集步骤&#xff08;总体角度&#xff09; 3.2、大数据采集步骤&#xff08;数据集角度&#xff09; 3.3、大数据采集步骤&#xff08;数据…

TCP之三次握手四次挥手

在前面的文章中我们了解到http是基于TCP/IP协议的&#xff0c;这篇文章我们来了解一下TCP/IP。 一、TCP与UDP 1、UDP 基于非连接。类似于写信&#xff0c;不能保证对方能不能接收到&#xff0c;接收到的内容是否完整&#xff0c;顺序是否正确。 优缺点&#xff1a;性能损耗小…

优化爬虫效率:利用HTTP代理进行并发请求

网络爬虫作为一种自动化数据采集工具&#xff0c;广泛应用于数据挖掘、信息监测等领域。然而&#xff0c;随着互联网的发展和网站的增多&#xff0c;单个爬虫往往无法满足大规模数据采集的需求。为了提高爬虫的效率和性能&#xff0c;我们需要寻找优化方法。本文将介绍一种利用…

网络安全行业岗位缺口有多大?看看美国有多少岗位空缺

网络安全行业岗位缺口一直很大&#xff0c;在各类统计中其实并不能完全客观的反应这个缺口&#xff0c;不过都可以作为一个参考。同时&#xff0c;网络安全行业岗位的人员能力参差不齐&#xff0c;不仅仅在数量上有所欠缺&#xff0c;同时从质量上更加加剧了对人才的需求。我们…

深入探讨梯度下降:优化机器学习的关键步骤(一)

文章目录 &#x1f340;引言&#x1f340;什么是梯度下降&#xff1f;&#x1f340;损失函数&#x1f340;梯度(gradient)&#x1f340;梯度下降的工作原理&#x1f340;梯度下降的变种&#x1f340;随机梯度下降&#xff08;SGD&#xff09;&#x1f340;批量梯度下降&#xf…

UML基础

统一建模语言&#xff08;UML是 Unified Modeling Language的缩写, 是用来对软件系统进行可视化建模的一种语言。UML为面向对象开发系统的产品 进行说明、可视化、和编制文档的一种标准语言。 共有9种图 UML中的图其实不止九种 (相同的图还可能会有不同的名称), 这里的九种图是…

SSM(Spring-Mybatis-SpringMVC)

文章目录 1. 介绍1.1 概念介绍 2 SSM整合框架3. SSM功能模块开发4 测试4.1 业务层接口测试4.2 表现层接口测试 5.优化 -表现层数据封装6.异常处理 1. 介绍 1.1 概念介绍 SSM项目是指基于SpringSpringMVCMyBatis框架搭建的Java Web项目。 Spring是负责管理和组织项目的IOC容器和…

selenium 动态爬取页面使用教程以及使用案例

Selenium 介绍 概述 Selenium是一款功能强大的自动化Web浏览器交互工具。它可以模拟真实用户在网页上的操作&#xff0c;例如点击、滚动、输入等等。Selenium可以爬取其他库难以爬取的网站&#xff0c;特别是那些需要登录或使用JavaScript的网站。Selenium可以自动地从Web页面…

[羊城杯 2020] easyphp

打开题目&#xff0c;源代码 <?php$files scandir(./); foreach($files as $file) {if(is_file($file)){if ($file ! "index.php") {unlink($file);}}}if(!isset($_GET[content]) || !isset($_GET[filename])) {highlight_file(__FILE__);die();}$content $_GE…