YOLOv5算法改进(10)— 替换主干网络之GhostNet

前言:Hello大家好,我是小哥谈。GhostNet是一种针对计算机视觉任务的深度神经网络架构,它于2020年由中国科学院大学的研究人员提出。GhostNet的设计目标是在保持高精度的同时,减少模型的计算和存储成本。GhostNet通过引入Ghost模块来实现高效的网络设计,Ghost模块是一种新颖的特征重用机制,它可以在网络中引入更多的轻量级子网络,这些子网络与主干网络以并行的方式连接,通过共享卷积核来提高计算效率。GhostNet在ImageNet图像分类任务上取得了较好的性能,并且在计算和存储方面比一些流行的网络模型如MobileNetV3和EfficientNet要更高效。因此,GhostNet被认为是一种具有潜力的轻量级神经网络架构,在计算资源有限的设备上具有广泛的应用前景。🌈 

 前期回顾:

           YOLOv5算法改进(1)— 如何去改进YOLOv5算法

           YOLOv5算法改进(2)— 添加SE注意力机制

           YOLOv5算法改进(3)— 添加CBAM注意力机制

           YOLOv5算法改进(4)— 添加CA注意力机制

           YOLOv5算法改进(5)— 添加ECA注意力机制

           YOLOv5算法改进(6)— 添加SOCA注意力机制

           YOLOv5算法改进(7)— 添加SimAM注意力机制

           YOLOv5算法改进(8)— 替换主干网络之MobileNetV3

           YOLOv5算法改进(9)— 替换主干网络之ShuffleNetV2

            目录

🚀1.论文

🚀2.GhostNet网络架构及原理

💥💥2.1 Ghost Module

💥💥2.2 Ghost Bottlenecks

💥​​​​​​​💥2.3 Ghostnet的构建

🚀3.YOLOv5结合Ghostnet

💥💥步骤1:在common.py中添加Ghostnet模块

💥💥步骤2:在yolo.py文件中加入类名 

💥💥步骤3:创建自定义yaml文件 

💥💥步骤4:验证是否加入成功

💥💥步骤5:修改train.py中的'--cfg'默认参数

🚀1.论文

GhostNet是2019年由华为诺亚方舟实验室发布的轻量级网络,速度和MobileNetV3相似,但是识别的准确率比MobileNetV3高,在ImageNet ILSVRC-2012分类数据集的达到了75.7%的top-1精度。该论文提除了Ghost模块,通过廉价操作生成更多的特征图。基于一组原始的特征图,作者应用一系列线性变换,以很小的代价生成许多能从原始特征发掘所需信息的“Ghost”特征图(Ghost feature maps)。Ghost模块是一种即插即用的模块,通过堆叠Ghost模块得出Ghost bottleneck,进而搭建轻量级神经网络——GhostNet🍃

论文题目:《GhostNet: More Features from Cheap Operations》

论文地址:  https://arxiv.org/abs/1911.11907

代码实现:  https://github.com/huawei-noah/Efficient-AI-Backbones/releases/tag/GhostNetV2


🚀2.GhostNet网络架构及原理

💥​​​​​​​💥​​​​​​​2.1 Ghost Module

通过上述的介绍,我们了解到了,GhostNet的核心思想就是使用一些计算量更低(Cheap Operations)的操作去生成这些冗余的特征图。在论文中,作者设计了一个名为Ghost Module的模块,他的功能是代替普通卷积。📚

Ghost Module将普通卷积分为两部分:

首先,进行一个普通的1x1卷积,这是一个少量卷积,比如正常使用32通道的卷积,这里就用16通道的卷积,这个1x1卷积的作用类似于特征整合,生成输入特征层的特征浓缩。

然后,我们再进行深度可分离卷积,这个深度可分离卷积是逐层卷积,它也就是论文上面提到的Cheap Operations。它利用上一步获得的特征浓缩生成Ghost特征图。

因此,如果我们从整体上去看这个Ghost Module,它其实就是两步简单思想的汇总

💞(1)利用1x1卷积获得输入特征的必要特征浓缩。

💞(2)利用深度可分离卷积获得特征浓缩的相似特征图(Ghost)。

Ghost-Module分成三个步骤:

🍀(1)先通过普通的conv生成一些特征图。
🍀(2)对生成的特征图进行cheap操作生成冗余特征图,这步使用的卷积是DW 卷积。
🍀(3)将conv生成的特征图与cheap操作生成的特征图进行concat操作。

如下图(b)所示,展示了Ghost模块和普通卷积的过程。👇

💥​​​​​​​💥2.2 Ghost Bottlenecks

实现了Ghost 模块,接下来开始搭建 Ghost Bottlenecks。

Ghost Bottlenecks是由Ghost Module组成的瓶颈结构,其实本质上就是用Ghost Module,来代替瓶颈结构里面的普通卷积。

Ghost Bottlenecks可以分为两个部分,分别是主干部分残差边部分,包含Ghost Module的,我们称它为主干部分。

Ghost Bottlenecks有两个种类,如下图所示,当我们需要对特征层的宽高进行压缩的时候,我们会设置这个Ghost Bottlenecks的Stride=2,即步长为2。此时我们会Bottlenecks里面多添加一些卷积层,在主干部分里,我们会在两个Ghost Module中添加一个步长为2x2的深度可分离卷积进行特征层的宽高压缩。在残差边部分,我们也会添加上一个步长为2x2的深度可分离卷积和1x1的普通卷积。🌹

接下来实现GhostNet。🔖

💥​​​​​​​💥2.3 Ghostnet的构建

GhostNet的参数结构参考论文中的图,如下图:

可以看到,整个Ghostnet都是由Ghost Bottlenecks进行组成的。

当一张图片输入到Ghostnet当中时,我们首先进行一个16通道的普通1x1卷积块(卷积+标准化+激活函数)。之后我们就开始Ghost Bottlenecks的堆叠了,利用Ghost Bottlenecks,我们最终获得了一个7x7x160的特征层(当输入是224x224x3的时候)。然后我们会利用一个1x1的卷积块进行通道数的调整,此时我们可以获得一个7x7x960的特征层。之后我们进行一次全局平均池化,然后再利用一个1x1的卷积块进行通道数的调整,获得一个1x1x1280的特征层。然后平铺后进行全连接就可以进行分类了。🌿


🚀3.YOLOv5结合Ghostnet

💥💥步骤1:在common.py中添加Ghostnet模块

将下面Ghostnet模块的代码复制粘贴到common.py文件的末尾。

class SeBlock(nn.Module):def __init__(self, in_channel, reduction=4):super().__init__()self.Squeeze = nn.AdaptiveAvgPool2d(1)self.Excitation = nn.Sequential()self.Excitation.add_module('FC1', nn.Conv2d(in_channel, in_channel // reduction, kernel_size=1))  # 1*1卷积与此效果相同self.Excitation.add_module('ReLU', nn.ReLU())self.Excitation.add_module('FC2', nn.Conv2d(in_channel // reduction, in_channel, kernel_size=1))self.Excitation.add_module('Sigmoid', nn.Sigmoid())def forward(self, x):y = self.Squeeze(x)ouput = self.Excitation(y)return x * (ouput.expand_as(x))class G_bneck(nn.Module):# Ghost Bottleneck https://github.com/huawei-noah/ghostnetdef __init__(self, c1, c2, midc, k=5, s=1, use_se = False):  # ch_in, ch_mid, ch_out, kernel, stride, use_sesuper().__init__()assert s in [1, 2]c_ = midcself.conv = nn.Sequential(GhostConv(c1, c_, 1, 1),              # ExpansionConv(c_, c_, 3, s=2, p=1, g=c_, act=False) if s == 2 else nn.Identity(),  # dw# Squeeze-and-ExciteSeBlock(c_) if use_se else nn.Sequential(),GhostConv(c_, c2, 1, 1, act=False))   # Squeeze pw-linearself.shortcut = nn.Identity() if (c1 == c2 and s == 1) else \nn.Sequential(Conv(c1, c1, 3, s=s, p=1, g=c1, act=False), \Conv(c1, c2, 1, 1, act=False)) # 避免stride=2时 通道数改变的情况def forward(self, x):# print(self.conv(x).shape)# print(self.shortcut(x).shape)return self.conv(x) + self.shortcut(x)

具体如下图所示:

💥💥步骤2:在yolo.py文件中加入类名 

首先在yolo.py文件中找到parse_model函数这一行,加入G_bneck模块

💥💥步骤3:创建自定义yaml文件 

models文件夹中复制yolov5s.yaml,粘贴并重命名为yolov5s_Ghostnet.yaml

然后根据Ghostnet的网络架构来修改配置文件。

yaml文件修改后的完整代码如下:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# Ghostnet backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [16, 3, 2, 1]],            # 0-P1/2  ch_out, kernel, stride, padding, groups[-1, 1, G_bneck, [16, 16, 3, 1]],        # 1  ch_out, ch_mid, dw-kernel, stride[-1, 1, G_bneck, [24, 48, 3, 2]],        # 2-P2/4[-1, 1, G_bneck, [24, 72, 3, 1]],        # 3[-1, 1, G_bneck, [40, 72, 3, 2, True]],  # 4-P3/8[-1, 1, G_bneck, [40, 120, 3, 1, True]], # 5[-1, 1, G_bneck, [80, 240, 3, 2]],        # 6-P4/16[-1, 3, G_bneck, [80, 184, 3, 1]],        # 7[-1, 1, G_bneck, [112, 480, 3, 1, True]],[-1, 1, G_bneck, [112, 480, 3, 1, True]],[-1, 1, G_bneck, [160, 672, 3, 2, True]], # 10-P5/32[-1, 1, G_bneck, [160, 960, 3, 1]],       # 11[-1, 1, G_bneck, [160, 960, 3, 1, True]],[-1, 1, G_bneck, [160, 960, 3, 1]],[-1, 1, G_bneck, [160, 960, 3, 1, True]],[-1, 1, Conv, [960]],]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [480, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 9], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [480, False]],  # 19[-1, 1, Conv, [240, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [240, False]],  # 23 (P3/8-small)[-1, 1, Conv, [240, 3, 2]],[[-1, 20], 1, Concat, [1]], # cat head P4[-1, 3, C3, [480, False]],  # 26 (P4/16-medium)[-1, 1, Conv, [480, 3, 2]],[[-1, 15], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [960, False]],  # 29 (P5/32-large)[[23, 26, 29], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

💥💥步骤4:验证是否加入成功

yolo.py文件里,配置我们刚才自定义的yolov5s_Ghostnet.yaml

然后运行yolo.py,得到结果。

这样就算添加成功了。🎉🎉🎉  

💥💥步骤5:修改train.py中的'--cfg'默认参数

train.py文件中找到 parse_opt函数,然后将第二行 '--cfg的default改为 'models/yolov5s_Ghostnet.yaml',然后就可以开始进行训练了。🎈🎈🎈


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/122241.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu22.04上下左右全方位美化教程

Ubuntu22.04上下左右全方位美化教程 以Plank替代Dock甲板安装使用优化除了Plank之外还有Ubuntu-Launchpad可以替代Dock Tweak-Tool配置主题Theme的配置下载解压配置 Icon文件夹显示风格的配置Cursors鼠标风格优化Background背景、Lock锁屏以及登陆页面的更换过渡动画配置安装 E…

大数据的关键技术之——大数据采集

大数据的关键技术之——大数据采集 本文目录: 一、写在前面的话 二、大数据采集概念 三、大数据采集步骤 3.1、大数据采集步骤(总体角度) 3.2、大数据采集步骤(数据集角度) 3.3、大数据采集步骤(数据…

TCP之三次握手四次挥手

在前面的文章中我们了解到http是基于TCP/IP协议的,这篇文章我们来了解一下TCP/IP。 一、TCP与UDP 1、UDP 基于非连接。类似于写信,不能保证对方能不能接收到,接收到的内容是否完整,顺序是否正确。 优缺点:性能损耗小…

优化爬虫效率:利用HTTP代理进行并发请求

网络爬虫作为一种自动化数据采集工具,广泛应用于数据挖掘、信息监测等领域。然而,随着互联网的发展和网站的增多,单个爬虫往往无法满足大规模数据采集的需求。为了提高爬虫的效率和性能,我们需要寻找优化方法。本文将介绍一种利用…

网络安全行业岗位缺口有多大?看看美国有多少岗位空缺

网络安全行业岗位缺口一直很大,在各类统计中其实并不能完全客观的反应这个缺口,不过都可以作为一个参考。同时,网络安全行业岗位的人员能力参差不齐,不仅仅在数量上有所欠缺,同时从质量上更加加剧了对人才的需求。我们…

深入探讨梯度下降:优化机器学习的关键步骤(一)

文章目录 🍀引言🍀什么是梯度下降?🍀损失函数🍀梯度(gradient)🍀梯度下降的工作原理🍀梯度下降的变种🍀随机梯度下降(SGD)🍀批量梯度下降&#xf…

UML基础

统一建模语言(UML是 Unified Modeling Language的缩写, 是用来对软件系统进行可视化建模的一种语言。UML为面向对象开发系统的产品 进行说明、可视化、和编制文档的一种标准语言。 共有9种图 UML中的图其实不止九种 (相同的图还可能会有不同的名称), 这里的九种图是…

SSM(Spring-Mybatis-SpringMVC)

文章目录 1. 介绍1.1 概念介绍 2 SSM整合框架3. SSM功能模块开发4 测试4.1 业务层接口测试4.2 表现层接口测试 5.优化 -表现层数据封装6.异常处理 1. 介绍 1.1 概念介绍 SSM项目是指基于SpringSpringMVCMyBatis框架搭建的Java Web项目。 Spring是负责管理和组织项目的IOC容器和…

selenium 动态爬取页面使用教程以及使用案例

Selenium 介绍 概述 Selenium是一款功能强大的自动化Web浏览器交互工具。它可以模拟真实用户在网页上的操作,例如点击、滚动、输入等等。Selenium可以爬取其他库难以爬取的网站,特别是那些需要登录或使用JavaScript的网站。Selenium可以自动地从Web页面…

[羊城杯 2020] easyphp

打开题目&#xff0c;源代码 <?php$files scandir(./); foreach($files as $file) {if(is_file($file)){if ($file ! "index.php") {unlink($file);}}}if(!isset($_GET[content]) || !isset($_GET[filename])) {highlight_file(__FILE__);die();}$content $_GE…

【广州华锐互动】AR技术在配电系统运维中的应用

随着科技的不断发展&#xff0c;AR(增强现实)技术逐渐走进了我们的生活。在电力行业&#xff0c;AR技术的应用也为巡检工作带来了许多新突破&#xff0c;提高了巡检效率和安全性。本文将从以下几个方面探讨AR配电系统运维系统的新突破。 首先&#xff0c;AR技术可以实现虚拟巡检…

opencv鼠标事件函数setMouseCallback()详解

文章目录 opencv鼠标事件函数setMouseCallback()详解1、鼠标事件函数&#xff1a;&#xff08;1&#xff09;鼠标事件函数原型&#xff1a;setMouseCallback()&#xff0c;此函数会在调用之后不断查询回调函数onMouse()&#xff0c;直到窗口销毁&#xff08;2&#xff09;回调函…

golang指针的学习笔记

package main // 声音文件所在的包&#xff0c;每个go文件必须有归属的包 import ("fmt" )// 引入程序中需要用的包&#xff0c;为了使用包下的函数&#xff0c;比如&#xff1a;Printin// 字符类型使用 func main(){ // 基本数据类型&#xff0c;变量存的就是值&am…

面向对象的软件测试案例 | Date.increment方法的测试

面向对象技术产生了更好的系统结构&#xff0c;更规范的编码风格&#xff0c;它极大地优化了数据使用的安全性&#xff0c;提高了程序代码的可重用性&#xff0c;使得一些人就此认为面向对象技术开发出的程序无须进行测试。应该看到&#xff0c;尽管面向对象技术的基本思想保证…

【前端】场景题:如何在ul标签中插入多个节点 使用文档片段

直接插入的问题&#xff1a;会回流多次。每插入一次li就会回流一次&#xff0c;消耗性能。 这里可以使用文档片段来解决这个问题。 // 创建文档片段 let node document.createDocumentFragment()DocumentFragment节点存在于内存中&#xff0c;并不在DOM中&#xff0c;所以将子…

Chrome 和 Edge 上出现“status_breakpoint”错误解决办法

文章目录 STATUS_BREAKPOINTSTATUS_BREAKPOINT报错解决办法Chrome浏览器 Status_breakpoint 错误修复- 将 Chrome 浏览器更新到最新版本- 卸载不再使用的扩展程序和应用程序- 安装计算机上可用的任何更新&#xff0c;尤其是 Windows 10- 重启你的电脑。 Edge浏览器 Status_brea…

flutter架构全面解析

Flutter 是一个跨平台的 UI 工具集&#xff0c;它的设计初衷&#xff0c;就是允许在各种操作系统上复用同样的代码&#xff0c;例如 iOS 和 Android&#xff0c;同时让应用程序可以直接与底层平台服务进行交互。如此设计是为了让开发者能够在不同的平台上&#xff0c;都能交付拥…

分类任务评价指标

分类任务评价指标 分类任务中&#xff0c;有以下几个常用指标&#xff1a; 混淆矩阵准确率&#xff08;Accuracy&#xff09;精确率&#xff08;查准率&#xff0c;Precision&#xff09;召回率&#xff08;查全率&#xff0c;Recall&#xff09;F-scorePR曲线ROC曲线 1. 混…

浅谈Mysql读写分离的坑以及应对的方案 | 京东云技术团队

一、主从架构 为什么我们要进行读写分离&#xff1f;个人觉得还是业务发展到一定的规模&#xff0c;驱动技术架构的改革&#xff0c;读写分离可以减轻单台服务器的压力&#xff0c;将读请求和写请求分流到不同的服务器&#xff0c;分摊单台服务的负载&#xff0c;提高可用性&a…

C#模拟PLC设备运行

涉及&#xff1a;控件数据绑定&#xff0c;动画效果 using System; using System.Windows.Forms;namespace PLCUI {public partial class MainForm : Form{ public MainForm(){InitializeComponent();}private void MainForm_Load(object sender, EventArgs e){// 方式2&#x…