网络编程套接字,Linux下实现echo服务器和客户端

目录

1、一些网络中的名词

1.1 IP地址

1.2 端口号port

1.3  "端口号" 和 "进程ID"

1.4 初始TCP协议

1.5 UDP协议

2、socket编程接口

2.1 socket 常见API

2.2 sockaddr结构

3、简单的网络程序

3.1 udp实现echo服务器和客户端

3.1.1 echo服务器实现

3.1.2 echo客户端实现

3.1.3 运行结果

3.2  tcp实现echo服务器和客户端

3.2.1 多进程的echo服务器

3.2.2 基于线程池tcp的echo服务器

 3.3 代码中的一些函数

3.3.1 地址转换函数

3.3.2 udp使用的的函数

3.3.3 tcp使用的函数

4、结语


1、一些网络中的名词

1.1 IP地址

        IP地址就和我们现实中的地址是一个概念,只不过一个在网络中定位,一个在现实中定位,

        在一台服务器往另一台服务器发送数据的时候,IP数据包的头部中,有两个IP地址,一个是源IP地址,另一个是目的IP地址,

1.2 端口号port

端口号(port)是传输层协议的内容.

        端口号是一个2字节16位的整数;

        端口号用来标识一个进程, 告诉操作系统, 当前的这个数据要交给哪一个进程来处理;

        IP地址 + 端口号能够标识网络上的某一台主机的某一个进程;

        一个端口号只能被一个进程占用.

1.3  "端口号" 和 "进程ID"

        pid 表示唯一一个进程; 此处我们的端口号也是唯一表示一个进程。一个进程可以绑定多个端口号; 但是一个端口号不能被多个进程绑定。

1.4 初始TCP协议

传输层协议

有连接

可靠传输

面向字节流

1.5 UDP协议

传输层协议

无连接

不可靠传输

面向数据报

网络字节序

        在计算机的内存中的多字节数据相对于内存地址有大端和小端之分, 磁盘文件中的多字节数据相对于文件中的偏移地址也有大端小端之分, 网络数据流同样有大端小端之分. 那么如何定义网络数据流的地址呢?

        发送主机通常将发送缓冲区中的数据按内存地址从低到高的顺序发出;

        接收主机把从网络上接到的字节依次保存在接收缓冲区中,也是按内存地址从低到高的顺序保存;

        因此,网络数据流的地址应这样规定:先发出的数据是低地址,后发出的数据是高地址.

        TCP/IP协议规定,网络数据流应采用大端字节序,即低地址高字节.

        不管这台主机是大端机还是小端机, 都会按照这个TCP/IP规定的网络字节序来发送/接收数据;

        如果当前发送主机是小端, 就需要先将数据转成大端; 否则就忽略, 直接发送即可;

        为使网络程序具有可移植性,使同样的C代码在大端和小端计算机上编译后都能正常运行,可以调用以下库函数做网络字节序和主机字节序的转换。

#include <arpa/inet.h>uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

h表示host,n表示network,l表示32位长整数,s表示16位短整数。

例如htonl表示将32位的长整数从主机字节序转换为网络字节序,例如将IP地址转换后准备发送。

如果主机是小端字节序,这些函数将参数做相应的大小端转换然后返回;

如果主机是大端字节序,这些  函数不做转换,将参数原封不动地返回。

2、socket编程接口

2.1 socket 常见API

// 创建 socket 文件描述符 (TCP/UDP, 客户端 + 服务器) 
int socket(int domain, int type, int protocol);
// 绑定端口号 (TCP/UDP, 服务器)
int bind(int socket, const struct sockaddr *address, socklen_t address_len);
// 开始监听socket (TCP, 服务器)
int listen(int socket, int backlog); 
// 接收请求 (TCP, 服务器)
int accept(int socket, struct sockaddr* address, socklen_t* address_len);
// 建立连接 (TCP, 客户端)
int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

2.2 sockaddr结构

        socket API是一层抽象的网络编程接口,适用于各种底层网络协议,如IPv4、IPv6,以及UNIX Domain Socket. 然而, 各种网络协议的地址格式并不相同.

         IPv4和IPv6的地址格式定义在netinet/in.h中,IPv4地址用sockaddr_in结构体表示,包括16位地址类型, 16位端口号和32位IP地址.

        IPv4、IPv6地址类型分别定义为常数AF_INET、AF_INET6. 这样,只要取得某种sockaddr结构体的首地址,不需要知道具体是哪种类型的sockaddr结构体,就可以根据地址类型字段确定结构体中的内容.

        socket API可以都用struct sockaddr *类型表示, 在使用的时候需要强制转化成sockaddr_in; 这样的好处是程序的通用性, 可以接收IPv4, IPv6, 以及UNIX Domain Socket各种类型的sockaddr结构体指针做为参数;

sockaddr 结构

struct sockaddr{__SOCKADDR_COMMON (sa_);	/* Common data: address family and length.  */char sa_data[14];		/* Address data.  */};

sockaddr_in 结构

struct sockaddr_in{__SOCKADDR_COMMON (sin_);in_port_t sin_port;			/* Port number.  */struct in_addr sin_addr;		/* Internet address.  *//* Pad to size of `struct sockaddr'.  */unsigned char sin_zero[sizeof (struct sockaddr) -__SOCKADDR_COMMON_SIZE -sizeof (in_port_t) -sizeof (struct in_addr)];};

        虽然socket api的接口是sockaddr, 但是我们真正在基于IPv4编程时, 使用的数据结构是sockaddr_in; 这个结构里主要有三部分信息: 地址类型, 端口号, IP地址.

in_addr结构

struct in_addr{in_addr_t s_addr;};

in_addr用来表示一个IPv4的IP地址. 其实就是一个32位的整数;

3、简单的网络程序

3.1 udp实现echo服务器和客户端

3.1.1 echo服务器实现

//udp_server.hpp
#include <iostream>
#include <string>
#include <cstring>
#include <cstdlib>
#include <unordered_map>
#include <vector>#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>class udpserver{
public:udpserver(std::string ip, int16_t port):_fd(-1), _ip(ip), _port(port),_users(0){}~udpserver(){if (_fd > 0) {close(_fd);}}void initServer() {_fd = socket(AF_INET, SOCK_DGRAM, 0);if (_fd < 0) {perror("注册socket失败");exit(2);}struct sockaddr_in local;memset(&local, 0, sizeof(local));local.sin_family = AF_INET;local.sin_port = htons(_port);local.sin_addr.s_addr = inet_addr(_ip.c_str());if (bind(_fd, (struct sockaddr*)&local, sizeof(local)) < 0) {perror("绑定失败!");exit(3);}//std::cout << "绑定成功!"<< std::endl;}void startServer(){//准备用来接收客户端发送的消息的缓冲区char buffer[1024];while (1) {//准备用来接收发送消息的客户端信息memset(buffer, '\0', sizeof(buffer));struct sockaddr_in peer;memset(&peer, 0, sizeof(peer));socklen_t len = sizeof(peer);//接收数据,以及接收发送数据的客户端信息//std::cout << "正在接收!" << std::endl;ssize_t recv_size = recvfrom(_fd, buffer, sizeof(buffer) - 1, 0, (struct sockaddr*)&peer, &len);//打印客户端发送来的数据//std::cout << "接收成功!正在打印:" << std::endl;// if (recv_size > 0) {//     buffer[recv_size] = 0;//     std::string ip = inet_ntoa(peer.sin_addr);//     int16_t port = ntohs(peer.sin_port);//     std::cout << "[" << ip << ":" << port << "]:";//     std::cout << buffer << std::endl;// }//处理数据buffer[recv_size] = 0;std::string massage;massage += inet_ntoa(peer.sin_addr);massage += ":";massage += ntohs(peer.sin_port);//_users.insert(make_pair<std::string,struct sockaddr_in>(massage, peer);_users.insert({massage, peer});massage += "#";massage += buffer;//_users.insert(makepair(, peer);//回写数据//sendto(_fd, buffer, strlen(buffer), 0, (struct sockaddr*)&peer, len);for (auto &s : _users) {sendto(_fd, massage.c_str(), massage.size(),0 ,(struct sockaddr*)&(s.second), sizeof(s.second));}}}private:int _fd;std::string _ip;int16_t _port;std::unordered_map<std::string,struct sockaddr_in> _users;
};
//udp_server.cpp
#include "udpserver.hpp"
#include <memory>int main(int argc, char* args[]) {std::string ip;int16_t port = 0;if (argc == 3) {ip = args[1];port = atoi(args[2]);}else if (argc == 2) {ip = "0.0.0.0";port = atoi(args[1]);}else{perror("输入错误!");return 1;}std::unique_ptr<udpserver> server(new udpserver(ip,port));server->initServer();server->startServer();return 0;
}

3.1.2 echo客户端实现

//udp_client.cpp
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <unistd.h>
#include <pthread.h>
#include <cstdio>#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <arpa/inet.h>struct sendData{int _sock;struct sockaddr_in *server;
};void* sending(void *arg) {struct sendData* data = (struct sendData*)arg;int sock = data->_sock;struct sockaddr_in server = *(data->server);while (1) {std::string massage;std::cerr << "请输入内容:" ;std::getline(std::cin, massage);//发送数据sendto(sock, massage.c_str(), massage.size(), 0, (struct sockaddr*)&server, sizeof(server));}
}void* receive(void *arg) {struct sendData* data = (struct sendData*)arg;int sock = data->_sock;char buffer[1024];while (1) {memset(buffer, '\0', sizeof(buffer));struct sockaddr_in from;socklen_t len = sizeof(from);ssize_t recv_size = recvfrom(sock, buffer, sizeof(buffer), 0, (struct sockaddr*)&from, &len);if(recv_size < 1) {continue;}buffer[recv_size] = '\0';//printf("[%s:%u]#%s\n",inet_ntoa(from.sin_addr),ntohs(from.sin_port),buffer);std::cout << buffer << std::endl;}
}//客户端,负责给服务端发送消息
int main(int argc, char* args[]) {if (argc != 3) {std::cerr << "请正确输入参数!" << std::endl;exit(1);}std::string ip = args[1];int16_t port = atoi(args[2]);//创建套接字int _sock = socket(AF_INET, SOCK_DGRAM, 0);//这里依然会绑定,但是不需要手动绑定,回自动绑定,在第一次send的时候自动绑定,  if (_sock < 0) {exit(2);}struct sockaddr_in server;server.sin_addr.s_addr = inet_addr(ip.c_str());server.sin_family = AF_INET;server.sin_port = htons(port);socklen_t len = sizeof(server);sendData data;data._sock = _sock;data.server = &server;//创建线程,让线程1负责发送,线程2负责接收pthread_t send,recv;pthread_create(&send,nullptr,sending,(void*)&data);pthread_create(&send,nullptr,receive,(void*)&data);pthread_join(send,nullptr);pthread_join(recv,nullptr);close(_sock);return 0;
}

3.1.3 运行结果

3.2  tcp实现echo服务器和客户端

3.2.1 多进程的echo服务器


#include <iostream>
#include <string>
#include <cerrno>
#include <cstring>
#include <signal.h>#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>static void servise(int serviseSock, std::string userip, int16_t userport) {char buffer[1024];while (1) {memset(buffer, 0, sizeof(buffer));size_t s = read(serviseSock,buffer,sizeof(buffer));    if (s > 0) {buffer[s] = '\0';std::cout << userip.c_str() << ":" << userport << "#" << buffer << std::endl;}else if (s == 0) {//表示对方关闭了连接std::cerr << userip << ":" << userport << " shutdowm,me too!" << std::endl;break;}else {std::cerr << "read socket error," << errno << strerror(errno) << std::endl;break;}write(serviseSock, buffer, strlen(buffer));}
}class tcpServer{
public:tcpServer(int16_t port, std::string ip = ""):_ip(ip),_port(port),_listenSock(-1){}~tcpServer(){if (_listenSock > 0) {close(_listenSock);}}void initServer(){//backlog不能太大也不能太小static int gbacklog = 20;//申请描述符_listenSock = socket(AF_INET, SOCK_STREAM, 0);if (_listenSock < 0) {std::cerr << "注册socket失败" << std::endl;exit(2);}//绑定端口号和IP地址struct sockaddr_in local;local.sin_family = AF_INET;local.sin_addr.s_addr = _ip.empty() ? INADDR_ANY : inet_addr(_ip.c_str());local.sin_port = htons(_port);if (bind(_listenSock, (struct sockaddr*)&local, sizeof(local)) < 0) {std::cerr << "绑定ip和端口号失败" << std::endl;exit(3);}//设置监听状态if (listen(_listenSock, gbacklog) < 0) {std::cerr << "设置监听失败" << std::endl;exit(4);}}void start() {//将子进程的信号改为忽略signal(SIGCHLD, SIG_IGN);while (1) {struct sockaddr_in user;socklen_t len = sizeof(user);int serviseSock = accept(_listenSock, (struct sockaddr*)&user, &len);std::string userip = inet_ntoa(user.sin_addr);int16_t userport = ntohs(user.sin_port);//servise(serviseSock,userip,userport);int pid = fork();if (pid == 0) {close(_listenSock);servise(serviseSock,userip,userport);close(serviseSock);exit(0);}close(serviseSock);}}private:std::string _ip;int16_t _port;int _listenSock;
};

        但是我们都知道,在操作系统中,进程是资源分配的基本单位,如果使用多进程的方案的话,就非常的浪费资源,所以,相比之下,使用多线程的方式回更好,我们在实现一个基于线程池的实现方式。

3.2.2 基于线程池tcp的echo服务器

//自己实现的循环队列,当中使用的锁和信号都是自己封装的,这里就不放代码了
//ringqueue.hpp
#include <iostream>
#include <vector>
#include "sem.hpp"
#include "mutex.hpp"template<class T>
class ringqueue {public:ringqueue(int capacity = 10):_ring_queue(capacity),_start(0),_tail(0),_space_sem(capacity),_data_sem(0),_mtx(){}void push(const T &in){_space_sem.p();_mtx.lock();_ring_queue[_start++] = in;_start %= _ring_queue.size();_data_sem.v();_mtx.unlock();}void pop(T & out){_data_sem.p();_mtx.lock();out = _ring_queue[_tail++];_tail %= _ring_queue.size();_space_sem.v();_mtx.unlock();}~ringqueue(){}private:std::vector<T> _ring_queue;int _start;int _tail;sem _space_sem;sem _data_sem;mutex _mtx;
};
//单例模式的线程池
//其中的线程也是自己进行封装的,不做代码展示
//thread_pool.hpp
#include "thread.hpp"
#include "ringQueue.hpp"
#include <ctime>
#include <unistd.h>template <class T>
struct poolData
{Thread* _self;ringqueue<T>* _rq;
};template <class T>
class Pool
{public:static Pool<T>* getpool(int num = 10){if (nullptr == _pool) {pthread_mutex_lock(&mtx);if (nullptr == _pool) {_pool = new Pool<T>(num);}pthread_mutex_unlock(&mtx);}return _pool;}private:Pool(int num) :_consumer(num),_rq(10){}Pool(const Pool& pool) = delete;Pool& operator=(const Pool& pool) = delete;
public:void strat(){poolData<T> condata[_consumer.size()];for (int i = 0; i < _consumer.size(); ++i) {_consumer[i] = new Thread(i);condata[i]._self = _consumer[i];condata[i]._rq = &_rq;_consumer[i]->create(consumer,&condata[i]);}}// 生产者void pushTask(T task){_rq.push(task);}// 消费者static void *consumer(void *args){poolData<T> *pd = (poolData<T>*)args;Thread *self = pd->_self;ringqueue<T> *rq = pd->_rq;std::cout << self->name() << " Successfully started!" << std::endl;while (true) {T t;rq->pop(t);(*t)();delete t;}}~Pool(){for (int i = 0; i < _consumer.size(); ++i) {_consumer[i]->join();delete _consumer[i];}}private:ringqueue<T> _rq;std::vector<Thread*> _consumer;static pthread_mutex_t mtx;static Pool<T>* _pool;
};template<class T>
Pool<T>* Pool<T>::_pool = nullptr;template<class T>
pthread_mutex_t Pool<T>::mtx = PTHREAD_MUTEX_INITIALIZER;
//tcp_server.hpp
#include "thread_pool.hpp"
#include "Task.hpp"#include <iostream>
#include <string>
#include <cerrno>
#include <cstring>
#include <signal.h>#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>static void servise(int serviseSock, std::string & userip, int16_t userport) {char buffer[1024];while (1) {memset(buffer, 0, sizeof(buffer));size_t s = read(serviseSock,buffer,sizeof(buffer));    if (s > 0) {buffer[s] = '\0';std::cout << userip.c_str() << ":" << userport << "#" << buffer << std::endl;}else if (s == 0) {//表示对方关闭了连接std::cerr << userip << ":" << userport << " shutdowm,me too!" << std::endl;break;}else {std::cerr << "read socket error," << errno << strerror(errno) << std::endl;break;}write(serviseSock, buffer, strlen(buffer));}close(serviseSock);
}class tcpServer{
public:tcpServer(int16_t port, std::string ip = ""):_ip(ip),_port(port),_listenSock(-1),_pool_ptr(Pool<Task*>::getpool()){}~tcpServer(){if (_listenSock > 0) {close(_listenSock);}}void initServer(){//backlog不能太大也不能太小static int gbacklog = 20;//申请描述符_listenSock = socket(AF_INET, SOCK_STREAM, 0);if (_listenSock < 0) {std::cerr << "注册socket失败" << std::endl;exit(2);}//绑定端口号和IP地址struct sockaddr_in local;local.sin_family = AF_INET;local.sin_addr.s_addr = _ip.empty() ? INADDR_ANY : inet_addr(_ip.c_str());local.sin_port = htons(_port);if (bind(_listenSock, (struct sockaddr*)&local, sizeof(local)) < 0) {std::cerr << "绑定ip和端口号失败" << std::endl;exit(3);}//设置监听状态if (listen(_listenSock, gbacklog) < 0) {std::cerr << "设置监听失败" << std::endl;exit(4);}}void start() {_pool_ptr->strat();while (1) {struct sockaddr_in user;socklen_t len = sizeof(user);int serviseSock = accept(_listenSock, (struct sockaddr*)&user, &len);std::string userip = inet_ntoa(user.sin_addr);int16_t userport = ntohs(user.sin_port);Task *task = new Task(serviseSock, userip, userport, servise);_pool_ptr->pushTask(task);}}private:std::string _ip;int16_t _port;int _listenSock;Pool<Task*>* _pool_ptr;
};
//服务器入口,
//tcp_server.cpp
#include "tcp_server.hpp"
#include <memory>int main(int argc, char* args[]) {std::string ip;int16_t port;if (argc == 2) {ip = "";port = atoi(args[1]);}else if (argc == 3) {ip = args[1];port = atoi(args[2]);}else {std::cerr << "输入错误!" << std::endl;exit(1);}std::unique_ptr<tcpServer> server(new tcpServer(port,ip));server->initServer();server->start();return 0;
}

3.2.3 运行结果

 3.3 代码中的一些函数

3.3.1 地址转换函数

        本节基于IPv4的socket网络编程,sockaddr_in中的成员struct in_addr sin_addr表示32位  的IP 地址但是我们通常用点分十进制的字符串表示IP 地址,以下函数可以在字符串表示  和in_addr表示之间转换;

字符串与in_addr的一些函数:

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>int inet_aton(const char *cp, struct in_addr *inp);
in_addr_t inet_addr(const char *cp);
in_addr_t inet_network(const char *cp);
char *inet_ntoa(struct in_addr in);
struct in_addr inet_makeaddr(int net, int host);
in_addr_t inet_lnaof(struct in_addr in);
in_addr_t inet_netof(struct in_addr in);

3.3.2 udp使用的的函数

发送函数sendto:

#include <sys/types.h>
#include <sys/socket.h>ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,const struct sockaddr *dest_addr, socklen_t addrlen);

接收函数recvfrom:

#include <sys/types.h>
#include <sys/socket.h>ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,struct sockaddr *src_addr, socklen_t *addrlen);

3.3.3 tcp使用的函数

发送函数

#include <sys/types.h>
#include <sys/socket.h>ssize_t send(int sockfd, const void *buf, size_t len, int flags);
#include <unistd.h>ssize_t write(int fd, const void *buf, size_t count);

接收函数

#include <unistd.h>ssize_t read(int fd, void *buf, size_t count);
#include <sys/types.h>
#include <sys/socket.h>ssize_t recv(int sockfd, void *buf, size_t len, int flags);

4、结语

        本文中若有错误,请私信或评论指出,谢谢!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/124418.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++ 数组

C 数组 C 支持数组数据结构&#xff0c;它可以存储一个固定大小的相同类型元素的顺序集合。数组是用来存储一系列数据&#xff0c;但它往往被认为是一系列相同类型的变量。 数组的声明并不是声明一个个单独的变量&#xff0c;比如 number0、number1、...、number99&#xff0…

爬虫逆向实战(30)-某查查股东关联公司(HmacSHA512)

一、数据接口分析 主页地址&#xff1a;某查查 1、抓包 通过抓包可以发现数据接口是api/people/getRelatCompany 2、判断是否有加密参数 请求参数是否加密&#xff1f; 无 请求头是否加密&#xff1f; 通过查看“标头”可以发现&#xff0c;请求头中有一个key和value都是…

记一次生产环境服务卡死排查记录

接现场运维报告某java服务CPU狂飙&#xff0c;服务处于卡死无响应状态 询问现场运维什么场景造成的&#xff0c;答复是偶发现象&#xff0c;没有规律&#xff0c;和请求高峰期并没有关系。 因为服务是负载均衡的&#xff08;A、B两台&#xff09;&#xff0c;临时处理让运维重…

【网络通信 -- WebRTC】FlexFec 基本知识点总结概述

【网络通信 -- WebRTC】FlexFec 基本知识点总结概述 【1】FlexFec 的保护方案 假设存在一组源数据包(D L)&#xff0c;其序列号从 1 开始运行到 D L 一维非交错行 FEC(1-D Non-interleaved Row FEC) : 一种连续的源数据包进行保护的方案&#xff0c;可用于恢复按行分组的源…

LaTeX总结-2023年9月8日

1. LaTeX总结 文章目录 1. LaTeX总结1.1. 定义作者&#xff0c;通讯作者&#xff0c;地址&#xff0c;宏包1.1.1. Example 11.1.2. Example 21.1.3. 特殊符号——作者标注注 1.2. 调整字体1.2.1. 数学模式下使用正体1.2.2. LaTeX内使用中文1.2.3. 正文文字 1.3. 常用符号及字母…

专业游戏翻译公司怎么选择比较合适

近年来&#xff0c;游戏行业持续繁荣&#xff0c;市场需求也在不断扩大&#xff0c;其中游戏翻译的需求越来越旺盛。无论是引进游戏还是让游戏走向国际市场&#xff0c;都需要专业的翻译公司来帮忙。那么&#xff0c;怎么选择合适的游戏翻译公司呢&#xff1f;让我们一起来看看…

大数据技术之Hadoop:HDFS存储原理篇(五)

目录 一、原理介绍 1.1 Block块 1.2 副本机制 二、fsck命令 2.1 设置默认副本数量 2.2 临时设置文件副本大小 2.3 fsck命令检查文件的副本数 2.4 block块大小的配置 三、NameNode元数据 3.1 NameNode作用 3.2 edits文件 3.3 FSImage文件 3.4 元素据合并控制参数 …

论文笔记:一分类及其在大数据中的潜在应用综述

0 概述 论文&#xff1a;A literature review on one‑class classification and its potential applications in big data 发表&#xff1a;Journal of Big Data 在严重不平衡的数据集中&#xff0c;使用传统的二分类或多分类通常会导致对具有大量实例的类的偏见。在这种情况…

小白备战大厂算法笔试(三)——栈、队列、双向队列

文章目录 栈栈常用操作栈的实现基于链表的实现基于数组的实现 两种实现对比栈典型应用 队列队列常用操作队列实现基于链表的实现基于数组的实现 队列典型应用 双向队列双向队列常用操作双向队列实现基于双向链表的实现基于数组的实现 双向队列应用 栈 栈是一种遵循先入后出的逻…

CVE-2017-12149

春秋云镜 CVE-2017-12149 JBoss反序列化漏洞 靶标介绍 2017年8月30日&#xff0c;厂商Redhat发布了一个JBOSSAS 5.x 的反序列化远程代码执行漏洞通告。该漏洞位于JBoss的HttpInvoker组件中的 ReadOnlyAccessFilter 过滤器中&#xff0c;其doFilter方法在没有进行任何安全检查…

算法通关村第十三关——溢出问题处理模板

前言 溢出问题是面试当中输出涉及到数字的一个需要特别注意的地方&#xff0c;典型的题目有三个&#xff1a;数字反转&#xff0c;将字符串转成数字和回文数。 1.整数反转 力扣7题&#xff0c;给你一个 32 位的有符号整数 x &#xff0c;返回将 x 中的数字部分反转后的结果。…

rk3399 linux 5.10 usb 2.0设备上电概率性注册失败

多次开关机&#xff0c;发现usb hub和4G都通信失败了&#xff0c;这就有点奇怪了&#xff0c;按理说usb驱动是没啥问题的 先查看usb log rootlinaro-alip:/# dmesg | grep usb [ 1.723797] usbcore: registered new interface driver usbfs [ 1.723828] usbcore: regis…

在很多公司里面会使用打tag的方式保留版本

&#xff1a;git tag|grep "xxx-dev“等分支来查看 2&#xff1a;git cherry-pick XXXXX 然后就是查看有冲突这些 git status 会出现相关的异常 然后解决相关的冲突 git add . git cherry-pick --continue git push XXX HEAD:refs/for/XXX 第一&#xff1a;git ta…

【LeetCode-中等题】17. 电话号码的字母组合

文章目录 题目方法一&#xff1a;递归回溯 题目 方法一&#xff1a;递归回溯 参考讲解&#xff1a;还得用回溯算法&#xff01;| LeetCode&#xff1a;17.电话号码的字母组合 首先可以画出树图&#xff1a; 先将数字对应的字符集合 加入到一个map集合 这里需要一个index来控…

伪静态web.config常见规则写法与参数介绍说明

伪静态web.config常见规则写法与参数介绍说明. 示例1&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <configuration><system.webServer><rewrite><rules><rule name"规则 1" stopProcessing"tru…

【AI理论学习】语言模型:从Word Embedding到ELMo

语言模型&#xff1a;从Word Embedding到ELMo ELMo原理Bi-LM总结参考资料 本文主要介绍一种建立在LSTM基础上的ELMo预训练模型。2013年的Word2Vec及2014年的GloVe的工作中&#xff0c;每个词对应一个vector&#xff0c;对于多义词无能为力。ELMo的工作对于此&#xff0c;提出了…

Go 接口和多态

在讲解具体的接口之前&#xff0c;先看如下问题。 使用面向对象的方式&#xff0c;设计一个加减的计算器 代码如下&#xff1a; package mainimport "fmt"//父类&#xff0c;这是结构体 type Operate struct {num1 intnum2 int }//加法子类&#xff0c;这是结构体…

MySQL——数据库以及数据表的创建

创建数据库 回到刚才创建数据库的问题&#xff0c;我们在创建数据库的时候可以通过添加一个参数&#xff0c;这个参数的意义在于当我们创建的数据库已经存在的时候则不会创建&#xff0c;也不会报错&#xff0c;如果不使用这个参数&#xff0c;则我们在重复创建一个已经存在的…

数据结构--- 树

(一)知识补充 定义 树是一种数据结构,它是由n(n≥0)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。​ 它具有以下的特点: 每个节点有零个或多个子节点; 没有父节点的节点称为根节点;每一个非根…

2023高教社杯 国赛数学建模E题思路 - 黄河水沙监测数据分析

1 赛题 E 题 黄河水沙监测数据分析 黄河是中华民族的母亲河。研究黄河水沙通量的变化规律对沿黄流域的环境治理、气候变 化和人民生活的影响&#xff0c; 以及对优化黄河流域水资源分配、协调人地关系、调水调沙、防洪减灾 等方面都具有重要的理论指导意义。 附件 1 给出了位…