基于Yolov8的中国交通标志(CCTSDB)识别检测系统

目录

1.Yolov8介绍

2.纸箱破损数据集介绍

2.1数据集划分

2.2 通过voc_label.py得到适合yolov8训练需要的

2.3生成内容如下

3.训练结果分析


1.Yolov8介绍

         Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的(SOTA)模型,它建立在先前YOLO成功基础上,并引入了新功能和改进,以进一步提升性能和灵活性。它可以在大型数据集上进行训练,并且能够在各种硬件平台上运行,从CPU到GPU。

具体改进如下:

  1. Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;

  2. PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;

  3. Decoupled-Head:是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;

  4. Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;

  5. 损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;

  6. 样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式

框架图提供见链接:Brief summary of YOLOv8 model structure · Issue #189 · ultralytics/ultralytics · GitHub

2.纸箱破损数据集介绍

道路破损数据集大小13829,类别一类:warning、prohibitory、mandatory,按照8:1:1进行数据集随机生成。

2.1数据集划分

通过split_train_val.py得到trainval.txt、val.txt、test.txt  

# coding:utf-8import os
import random
import argparseparser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()trainval_percent = 0.9
train_percent = 0.8
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):os.makedirs(txtsavepath)num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')for i in list_index:name = total_xml[i][:-4] + '\n'if i in trainval:file_trainval.write(name)if i in train:file_train.write(name)else:file_val.write(name)else:file_test.write(name)file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

2.2 通过voc_label.py得到适合yolov8训练需要的

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwdsets = ['train', 'val']
classes = ["warning","prohibitory","mandatory"]   # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation(image_id):in_file = open('Annotations/%s.xml' % (image_id), encoding='UTF-8')out_file = open('labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').text#difficult = obj.find('Difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()
for image_set in sets:if not os.path.exists('labels/'):os.makedirs('labels/')image_ids = open('ImageSets/Main/%s.txt' % (image_set)).read().strip().split()list_file = open('%s.txt' % (image_set), 'w')for image_id in image_ids:list_file.write(abs_path + '/images/%s.jpg\n' % (image_id))convert_annotation(image_id)list_file.close()

2.3生成内容如下

 

3.训练结果分析

confusion_matrix.png :列代表预测的类别,行代表实际的类别。其对角线上的值表示预测正确的数量比例,非对角线元素则是预测错误的部分。混淆矩阵的对角线值越高越好,这表明许多预测是正确的。

 上图是道路破损检测训练,有图可以看出 ,分别是破损和background FP。该图在每列上进行归一化处理。则可以看出破损检测预测正确的概率为91%。

F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。

TP:真实为真,预测为真;

FN:真实为真,预测为假;

FP:真实为假,预测为真;

TN:真实为假,预测为假;

精确率(precision)=TP/(TP+FP)

召回率(Recall)=TP/(TP+FN)

F1=2*(精确率*召回率)/(精确率+召回率)

 labels_correlogram.jpg :显示数据的每个轴与其他轴之间的对比。图像中的标签位于 xywh 空间。

 labels.jpg :

(1,1)表示每个类别的数据量

(1,2)真实标注的 bounding_box

(2,1) 真实标注的中心点坐标

(2,2)真实标注的矩阵宽高

 P_curve.png:表示准确率与置信度的关系图线,横坐标置信度。由下图可以看出置信度越高,准确率越高。

 PR_curve.png :PR曲线中的P代表的是precision(精准率)R代表的是recall(召回率),其代表的是精准率与召回率的关系。

 R_curve.png :召回率与置信度之间关系

 预测结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/127685.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据分析】Python:处理缺失值的常见方法

在数据分析和机器学习中,缺失值是一种常见的现象。在实际数据集中,某些变量的某些条目可能没有可用的值。处理缺失值是一个重要的数据预处理步骤。在本文中,我们将介绍如何在 Pandas 中处理缺失值。 我们将探讨以下内容: 什么是缺…

Redis-带你深入学习数据类型list

目录 1、list列表 2、list相关命令 2.1、添加相关命令:rpush、lpush、linsert 2.2、查找相关命令:lrange、lindex、llen 2.3、删除相关命令:lpop、rpop、lrem、ltrim 2.4、修改相关命令:lset 2.5、阻塞相关命令&#xff1a…

appium环境搭建

一.appium环境搭建 1.python3 python3的下载安装这里就不多做介绍了,当然你也可以选择自己喜欢的语音,比如java… 2.jdk 1)下载地址 官网(需登录账号): https://www.oracle.com/java/technologies/downloads/ 百度网盘&…

Qt应用开发(基础篇)——向导对话框 QWizard

一、前言 QWizard类继承于QDialog,为有向导界面需求的应用环境提供了一个框架。 对话框窗口 QDialog QWizard向导对话框是一个拥有队列界面的特殊对话框,向导的目的是引导用户一步一步的完成预设的流程。向导常用于软件安装界面向导、硬件线路安装向导、…

界面控件DevExpress WPF(v23.2)下半年发展路线图

本文主要概述了DevExpress官方在下半年(v23.2)中一些与DevExpress WPF相关的开发计划。 通过DevExpress WPF能创建有着强大互动功能的XAML基础应用程序,这些应用程序专注于当代客户的需求和构建未来新一代支持触摸的解决方案。 DevExpress …

一起学数据结构(5)——栈和队列

1. 栈的相关定义及特点: 1. 栈的相关定义: 在正式介绍栈的定义之前,首先来回顾一下关于线性表的定义: 线性表是具有相同数据类型的个数据元素的有限序列,其中为表长。当时,可以把线性表看作一个空表&…

SwiftUI 内功加持:“曳光弹“实现自定义样式进度条(ProgressView)

概览 虽然 SwiftUI 已为我们内置了很多常用视图,不过有时我们还是需要根据实际来进一步美化显示或增加功能。 如上图所示,在本篇博文中我们将结合敏捷哲学中一个超级实用的开发技巧:曳光弹,来一步一个脚印循序渐进的实现 Progres…

redisson分布式锁

RLock官网解释 基于Redis的Java分布式可重入锁对象,实现了锁接口。 如果获得锁的Redisson实例崩溃,那么这种锁可能永远挂起在获得状态。为了避免这种情况,Redisson维护了锁看门狗,它在锁持有者Redisson实例活着的时候延长锁过期时…

逻辑回归(Logistic Regression)

1.分类问题 在分类问题中,你要预测的变量 y是离散的值,我们将学习一种叫做逻辑回归 (Logistic Regression) 的算法,这是目前最流行使用最广泛的一种学习算法。 在分类问题中,我们尝试预测的是结果是否属于某一个类(例…

MultipartFile是什么

Multipart是一种file的类型 在我们进行文件上传时所发出的请求,我们页面对请求格式有明确的要求: 1.post提交表单方式 2.编码格式enctype必须是muitipart/form-data,这种格式适合传输数据量大的二进制数据文件 3.类型必须是file类 流程举例&#xf…

软件测试报告有什么用?

报告类型 不同的报告类型有不同的报告用途,以下分类别进行分析 1、登记测试报告 可以用于软件产品的增值税即征即退、软件企业的双软评估以及计算机系统集成资质的材料 2、鉴定\确认测试报告 可以用用于政府项目申报、高新认证、项目结题、创新产品认定、各类政…

Excel怎么批量生成文件夹

Excel怎么批量生成文件夹的链接: https://jingyan.baidu.com/article/ea24bc398d9dcb9b63b3312f.html

C 风格文件输入/输出---直接输入/输出---(std::fread)---(std::fwrite)

C 标准库的 C I/O 子集实现 C 风格流输入/输出操作。 <cstdio> 头文件提供通用文件支持并提供有窄和多字节字符输入/输出能力的函数&#xff0c;而 <cwchar>头文件提供有宽字符输入/输出能力的函数。 从直接输入/输出 文件读取 std::fread 从给定输入流 stream …

MMDetection实验记录踩坑记录

AP值始终为0 在实验MMDetection的DAB-DETR模型进行实验时&#xff0c;AP值始终上不去。 可以看到&#xff0c;在第22个epoch时的AP值仅为0.002 因为在此之前已经运行过YOLOX,Faster-RCNN等模型&#xff0c;所以数据集的设置肯定是没有问题的&#xff0c;而博主也只是修改了DAB…

Qt包含文件不存在问题解决 QNetworkAccessManager

这里用到了Qt的网络模块&#xff0c;在.pro中添加了 QT network 但是添加 #include <QNetworkAccessManager> 会报错说找不到&#xff0c;可以通过在项目上右键执行qmake后&#xff0c;直接#include <QNetworkAccessManager>就不会报错了&#xff1a;

java获取jenkins发布版本信息

一.需求&#xff1a; 系统cicd发布时首页需要展示jenkins发布的版本和优化内容 二.思路: 1.jenkins创建用户和秘钥 2.找到对应构建任务信息的api 3.RestTemplate发起http请求 三.实现&#xff1a; 1.创建用户和token 2.查找jenkins API 创建 Job POST http://localhost…

Flask狼书笔记 | 06_电子邮件

文章目录 6 电子邮件6.1 使用Flask-Mail发送6.2 使用事务邮件服务SendGrid6.3 电子邮件进阶6.4 小结 6 电子邮件 Web中&#xff0c;我们常在用户注册账户时发送确认邮件&#xff0c;或是推送信息。邮件必要的字段包含发信方(sender)&#xff0c;收信方(to)&#xff0c;邮件主题…

【vue2第十四章】 插槽(普通插槽、具名插槽、作用域插槽语法)

插槽 插槽是什么&#xff1f; 在 Vue 2 中&#xff0c;插槽&#xff08;slot&#xff09;是一种用于定义组件内部内容分发的机制。它允许你将组件中的一部分内容替换为用户自定义的内容&#xff0c;并在组件内部进行渲染。 通过在组件模板中使用 <slot></slot> 标…

常见IO模型(非常详细)

背景知识 常⽤5中⽹络IO模型 阻塞IO&#xff08;Blocking IO&#xff09;⾮阻塞IO&#xff08;Non-Blocking IO&#xff09;多路复⽤IO&#xff08;IO Multiplexing&#xff09;信号驱动IO&#xff08;Signal Driven IO&#xff09;异步IO&#xff08;Asynchronous IO&#x…

纯css实现奥运五环、3D平移、旋转、扭曲

文章目录 前言效果图htmlcss 前言 1、不是真正的五环&#xff0c;因为通过形变得来。 2、不同电脑显示器的像素不同&#xff0c;显现的效果不同。 3、不推荐使用此方法。 4、主要通过旋转加平移的方式实现。 效果图 html <div class"olympic_rings"><span …