服务器(I/O)之多路转接

五种IO模型

1、阻塞等待:在内核将数据准备好之前,系统调用会一直等待。所有的套接字,默认都是阻塞方式。

2、非阻塞等待:如果内核没有将数据准备好,系统调用仍然会返回,并且会返回EWUOLDBLOCK或者EAGAIN错误码。

3、信号驱动:内核将数据准备好的时候,使用SIGIO信号通知应用程序进行IO操作。

4、多路转接(多路转接):能够同时等待多个文件句柄的就绪状态。

5、异步IO:由内核在数据拷贝完成时,通知应用程序。(而信号驱动是告诉应用程序什么时候可以开始拷贝数据)。

前四种都属于同步IO,第五种属于异步IO。同步IO和异步IO,区别在于同步IO会参与IO结果的获取的过程。而异步IO则是不会参与IO结果获取的过程,直接拿到最终的IO结果。

IO的本质就是等和拷贝数据。也就是说没有数据的时候,就需要等待数据,当有数据的时候,再将数据拷贝走。而高效的IO,要达到高效,关键在于减少等的比重才能达到效果。在上述的五种IO模型中,多路转接的方式,一次等待多个文件描述符,在某种意义上等的效率更高,也就是说一次等通知多个就绪能够进行拷贝的文件描述符。

I/O多路转接之select

select系统调用是用来让我们的程序监视多个文件描述符的状态变化的; 程序会停在select这里等待,直到被监视的文件描述符有一个或多个发生了状态改变;

函数原型

参数解释:

nfds表示最大文件描述符+1。

readfdswritefdsexceptfds(位图结构)分别需要检测的可读文件描述符集合、可写文件描述符集合和异常文件描述符集合。

timeout表示设置select()的等待时间。(timeout取值(NULL、0、特定时间)

NULL表示阻塞等待,

0则表示仅检测描述符集合的状态,然后立即返回,

特定时间值表示select的等待时间)。

操作fd_set位图结构的接口

函数返回值

执行成功---->则返回文件描述词状态已改变的个数

如果返回0---->代表在描述词状态改变前已超过timeout时间,没有返回

当有错误发生时则---->返回-1,错误原因存于errno,此时参数readfds,writefds, exceptfds和timeout的 值变成不可预测。

select特点

可监控的文件描述符个数取决与sizeof(fd_set)的值. 我这边服务器上sizeof(fd_set)=512,每bit表示一个文件描述符,则我服务器上支持的最大文件描述符是512*8=4096.

将fd加入select监控集的同时,还要再使用一个数据结构array保存放到select监控集中的fd,         一是用于再select 返回后,array作为源数据和fd_set进行FD_ISSET判断。

        二是select返回后会把以前加入的但并无事件发生的fd清空,则每次开始select前都要重新从array取得fd逐一加入(FD_ZERO最先),扫描array的同时取得fd最大值maxfd,用于select的第一个参数。

select缺点

每次调用select, 都需要手动设置fd集合, 从接口使用角度来说也非常不便.

每次调用select,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大

每次调用select都需要在内核遍历传递进来的所有fd,这个开销在fd很多时也很大

select支持的文件描述符数量太小

I/O多路转接之poll

函数原型

参数解释:

fds是一个poll函数监听的结构列表. 每一个元素中, 包含了三部分内容: 文件描述符, 监听的事件集合, 返回的事件集合.

其中events和revents的取值可以为如下。比如POLLIN或者POLLOUT但是某一位为1的宏,可以设置进events或者内核设置进revents中。

nfds表示fds数组的长度

timeout表示poll函数的超时时间, 单位是毫秒(ms).

返回值

返回值  <  0, 表示出错;

返回值  =  0, 表示poll函数等待超时;

返回值  >  0, 表示poll由于监听的文件描述符就绪而返回

poll的优点

不同与select使用三个位图来表示三个fdset的方式,poll使用一个pollfd的指针实现

        pollfd结构包含了要监视的event和发生的event,不再使用select“参数-值”传递的方式. 接口使用比 select更方便

        poll并没有最大数量限制 (但是数量过大后性能也是会下降,因为需要轮询的检测就绪的事件).

poll的缺点

在监听的文件句柄增多时

和select函数一样,poll返回后,需要轮询pollfd来获取就绪的描述符.

每次调用poll都需要把大量的pollfd结构从用户态拷贝到内核中.

同时连接的大量客户端在一时刻可能只有很少的处于就绪状态, 因此随着监视的描述符数量的增长, 其效率也会线性下降.

I/O多路转接之epoll

函数原型

创建epoll句柄

epoll的函数与select和poll的函数不同,epoll的函数有三个分别独立完成各自功能。

参数size表示所创建的epoll模型,最大能监听文件句柄的数目。

返回值

success -----> return 正数。fail -----> return -1

将要监控的文件描述符进行注册

参数:

        epfd表示我们所创建的epoll模型的文件句柄。

        op表示关心添加的文件句柄的什么行为。用三个宏来表示。

                EPOLL_CTL_ADD :注册新的fd到epfd中;

                EPOLL_CTL_MOD :修改已经注册的fd的监听事件;

                EPOLL_CTL_DEL :从epfd中删除一个fd;

        fd表示我们需要添加关心的文件句柄

        event表示我们关心添加的文件句柄的什么事件。epoll_event结构体如下:

                

                其中events可以是一下宏的集合

返回值:

success -----> return 0。fail -----> return -1

等待文件描述符就绪

参数:

        epfd表示我们所创建的epoll模型的文件句柄。

        events表示系统监听到文件句柄的事件就绪并拷贝至用户的结构体数组

        maxevents表示events数组的大小。

        timeout表示超时时间(毫秒,0会立即返回,-1是永久阻塞)。

返回值:

        success ----> return 就绪的文件描述符的个数。

        超时  ----->  return 0

        fail  ----> return -1

多路转接的工作原理

首先,epoll的使用是一个单进程,因此我们可以通过进程找到对应的epoll句柄。

select和poll的原理:忽略其中的1、2和文件句柄,就单单看3。当外设将数据通过驱动刷新到对应文件句柄中,该文件句柄就就绪了。但是使用者需要轮询遍历3这个队列。

epoll的原理:现在我们需要将上图看作一个整体,epoll模型中存在一个红黑树存放关心的文件句柄,并带有回调函数。当外设将数据通过驱动刷新到对应文件句柄中,该文件句柄就就绪了。然后调用其回调函数,将3中就绪的文件句柄添加到2中的就绪队列中。也就是说,epoll不用再轮询遍历3这个队列了,直接遍历2这个就绪队列就能拿到所有就绪的文件句柄了。

        其次,epoll中维护着红黑树、就绪队列等数据结构,在Linux中都是交由文件管理的。着就是为什么要创建epoll模型,也就是epoll文件句柄了。

        epoll中的三个函数epoll_create、epoll_ctl、epoll_wait,epoll_create函数负责创建句柄,并初始化队列3的大小。epoll_ctl函数负责向红黑树中添加关心的文件句柄,并注册回调函数。epoll_wait函数则是遍历就绪队列2,拿到就绪的文件句柄。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/127781.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Oracle数据库概念简介

1. 数据库 一般意义上的数据库包含两个部分 库&#xff1a;就是一个存储一堆文件的文件目录数据库管理系统&#xff1a;管理库的系统 2. DBMS 数据库管理系统 数据库管理系统(Database Management System)&#xff0c;是一种操纵和管理数据库的大型软件&#xff0c;用于建立…

kubernetes(K8S)笔记

文章目录 大佬博客简介K8SDocker VS DockerDockerK8S简介K8S配合docker相比较单纯使用docker 大佬博客 Kubernetes&#xff08;通常缩写为K8s&#xff09;是一个用于自动化容器化应用程序部署、管理和扩展的开源容器编排平台。它的构造非常复杂&#xff0c;由多个核心组件和附加…

UNIAPP之js/nvue混淆探索

因项目需要对UNIAPP的js混淆做了一些调研 混淆教程: https://uniapp.dcloud.net.cn/tutorial/app-sec-confusion.html 按照教程配置进行打包正式包进行混淆 下载正式包将 .ipa改为.zip 解压获取到HBuilder.app 右键显示包内容 获取到混淆的key 不同时间进行打包混淆同一文…

Zabbix 利用 Grafana 进行图形展示

安装grafana和插件 配置zabbix数据源 导入模版 查看数据 1.安装grafana wget https://mirrors.tuna.tsinghua.edu.cn/grafana/yum/rpm/Packages/grafana-10.0.0-1.x86_64.rpm [rootrocky8 apps]# yum install grafana-10.0.0-1.x86_64.rpm [rootrocky8 apps]# systemctl sta…

【公网远程手机Android服务器】安卓Termux搭建Web服务器

目录 概述 1.搭建apache 2.安装cpolar内网穿透 3.公网访问配置 4.固定公网地址 5.添加站点 概述 Termux是一个Android终端仿真应用程序&#xff0c;用于在 Android 手机上搭建一个完整的Linux 环境&#xff0c;能够实现Linux下的许多基本操作&#xff0c;不需要root权限…

springWeb

springweb就是spring框架中的一个模块&#xff0c;对web层进行了封装&#xff0c;使用起来更加方便。如何方便&#xff1f;参数接收框架进行封装 SpringWeb拥有控制器&#xff0c;接收外部请求&#xff0c;解析参数传给服务层。 SpringWeb运行流程 用户发起请求 ip:端口/项目名…

晶尔忠产业集团全面启动暨表彰大会

八月下旬&#xff0c;三伏已尽&#xff0c;初秋遂至。夏日的余热还没有完全散去&#xff0c;初秋的热浪随之席卷而来&#xff0c;大地依旧绿意盎然&#xff0c;万物正是生长最猛烈的时期&#xff0c;为秋天的收获做最后的冲刺&#xff0c;这是一个充满生机的时节&#xff0c;也…

设计模式之桥接模式、组合模式与享元模式

目录 桥接模式 简介 优缺点 结构 实现 运用场景 组合模式 简介 优缺点 结构 实现 运用场景 享元模式 简介 优缺点 结构 实现 运用场景 桥接模式 简介 将抽象与实现分离&#xff0c;使它们可以独立变化。它是用组合关系代替继承关系来实现&#xff0c;从而降…

基于springboot的图片文字识别,支持中英文识别

概述 基于springboot的图片文字识别,支持中英文识别. 页面上传图片即可转换为中文或者英文. 详细 1.需求&#xff08;要做什么&#xff09; 识别图片文字, 实现页面上传图片即可转换为中文或者英文. 2.理论概述 OCR&#xff0c;即Optical Character Recognition&#xff…

数据结构与算法:概述

目录 算法 评价标准 时间的复杂度 概念 推导原则 举例 空间的复杂度 定义 情形 运用场景 数据结构 组成方式 算法 在数学领域&#xff0c;算法是解决某一类问题的公式和思想&#xff1b; 计算机科学领域&#xff0c;是指一系列程序指令&#xff0c;用于解决特定的…

数据结构插入排序

好久不见&#xff0c;这几天有点事情&#xff0c;都快一个礼拜没有学习&#xff0c;对键盘都要陌生起来了&#xff0c;今天也是刚刚学了一点排序&#xff0c;在这里也给大家更新一个插入排序&#xff0c;后面也会渐渐的把八大排序更新完的&#xff0c;还有就是二叉树&#xff0…

Vivado 2017.04版本安装教程

文章目录 前言一、vivado 简介二、vivado 下载三、vivado 安装四、vivado 申请证书五、关闭升级提醒六、资源自取 前言 本文记录了在 windows 11 下安装 vivado 2017 的详细步骤。 一、vivado 简介 Vivado 是 Xilinx 公司于 2012 推出的新一代集成设计环境&#xff0c;虽然目…

学习笔记|定时器|STC中断|定时器时间计算|STC32G单片机视频开发教程(冲哥)|第十一集:定时器的作用和意义

文章目录 1.定时器的作用和意义定时器中断定时器是定时器和计数器的统称。 2.STC32G单片机定时器使用原理2.1 先设置功能为定时器/计数器(本质都是加法计数器)2.2、在定时器模式下&#xff0c;设置不分频或者12分频∶Tips&#xff1a;选择不分频还是12分频2.3、定时器的工作模式…

算法竞赛个人注意事项

浅浅记录一下自己在算法竞赛中的注意事项。 数据类 注意看数大小&#xff0c;数学库中的函数尽量加上 * 1.0&#xff0c;转成double&#xff0c;防止整型溢出。&#xff0c;int型相乘如果可能溢出&#xff0c;乘 * 1LL。 数据范围大于1e6&#xff0c;注意用快读。 浮点数输…

HCIP自我重修总笔记

第一章.复习OSITCP/IP 模型 &#xff08;2023 9/5&#xff09; OSI 模型: 开放式系统互联参考模型 应用层&#xff1a;抽象语言-->编码表示层&#xff1a;编码--->二进制会话层&#xff1a;提供会话地址&#xff0c;建立应用程序端到端的会话 上三层为应用程序对数据加…

初识Python

初识Python Python背景知识1. 编程语言2. Python优缺点 搭建Python环境1.找到官网2. 下载3.安装4.检查 安装PyCharm1.找到官网下载2. 安装3. 检查 Python官网文档学习 Python背景知识 1. 编程语言 编程语言通常可以分为以下三类&#xff1a; 高级语言&#xff08;High-Level…

PostgreSQL 查询修改max_connections(最大连接数)及其它配置

文章目录 查询max_connections(最大连接数)修改max_connections(最大连接数)其他配置 查询max_connections(最大连接数) SHOW max_connections;修改max_connections(最大连接数) 要设置PostgreSQL数据库的最大连接数&#xff0c;你需要修改数据库的配置文件 postgresql.conf。…

el-table中加图标文字提示

<el-table :data"tableData" style"width: 100%" max-height"250"><el-table-column fixed prop"aaa" label"日期" width"150" /><el-table-column prop"bbb" label"日期" wi…

【技能树笔记】网络篇——练习题解析(二)

目录 前言 一. 数据链路层的作用 1.1 数据链路层作用 1.2 数据链路层封装 1.3 数据链路层功能 1.4 数据帧格式 二. MAC地址及分类 2.1 MAC地址 2.2 MAC地址分类 三. 交换机的作用 3.1 交换机的作用 3.2 交换机作用 四.交换机的工作原理 4.1 交换机的工作原理 4.…

决策树算法学习笔记

一、决策树简介 首先决策树是一种有监督的机器学习算法&#xff0c;其采用的方法是自顶向下的递归方法&#xff0c;构建一颗树状结构的树&#xff0c;其具有分类和预测功能。其基本思想是以信息熵为度量构造一棵熵值下降最快的树&#xff0c;到叶子节点处的熵值为零。决策树的构…