时序预测 | MATLAB实现ICEEMDAN-iMPA-BiLSTM时间序列预测

时序预测 | MATLAB实现ICEEMDAN-iMPA-BiLSTM时间序列预测

目录

    • 时序预测 | MATLAB实现ICEEMDAN-iMPA-BiLSTM时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

ICEEMDAN-iMPA-BiLSTM功率/风速预测 基于改进的自适应经验模态分解+改进海洋捕食者算法+双向长短期记忆网络时间序列预测~组合预测
1.分解时避免了传统经验模态分解的一些固有缺陷,效果更佳,并通过改进的海洋捕食者算法对BiLSTM四个参数进行寻优,最后对每个分量建立BiLSTM模型进行预测后叠加集成,全新组合预测,出图多且精美~
2.改进点如下:
通过一个新的自适应参数来控制捕食者移动的步长,并使用非线性参数作为控制参数来平衡NMPA的探索和开发阶段,有效提高其搜索精度与收敛速度。
1⃣️直接替换excel数据即可用 适合新手小白
2⃣️附赠案例数据 可直接运行

程序设计

  • 完整程序和数据下载方式私信博主回复:MATLAB实现ICEEMDAN-iMPA-BiLSTM时间序列预测
%%  参数设置
%% 训练模型
%% 模型预测%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
function [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)
% ELMTRAIN Create and Train a Extreme Learning Machine
% Syntax
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)
% Description
% Input
% P   - Input Matrix of Training Set  (R*Q)
% T   - Output Matrix of Training Set (S*Q)
% N   - Number of Hidden Neurons (default = Q)
% TF  - Transfer Function:
%       'sig' for Sigmoidal function (default)
%       'sin' for Sine function
%       'hardlim' for Hardlim function
% TYPE - Regression (0,default) or Classification (1)
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Output
% IW  - Input Weight Matrix (N*R)
% B   - Bias Matrix  (N*1)
% LW  - Layer Weight Matrix (N*S)
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Example
% Regression:
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',0)
% Y = elmtrain(P,IW,B,LW,TF,TYPE)
% Classification
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',1)
% Y = elmtrain(P,IW,B,LW,TF,TYPE)
% See also ELMPREDICT
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 2error('ELM:Arguments','Not enough input arguments.');
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 3N = size(P,2);
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 4TF = 'sig';
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 5TYPE = 0;
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if size(P,2) ~= size(T,2)error('ELM:Arguments','The columns of P and T must be same.');
end
[R,Q] = size(P);
if TYPE  == 1T  = ind2vec(T);
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[S,Q] = size(T);
% Randomly Generate the Input Weight Matrix
IW = rand(N,R) * 2 - 1;
% Randomly Generate the Bias Matrix
B = rand(N,1);
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
BiasMatrix = repmat(B,1,Q);
% Calculate the Layer Output Matrix H
tempH = IW * P + BiasMatrix;
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
switch TFcase 'sig'H = 1 ./ (1 + exp(-tempH));case 'sin'H = sin(tempH);case 'hardlim'H = hardlim(tempH);
end
% Calculate the Output Weight Matrix
LW = pinv(H') * T';
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

参考资料

[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/129184.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言深入理解指针(非常详细)(五)

目录 回调函数qsort使用举例qsort函数的模拟实现sizeof和strlen的对比sizeofstrlensizeof和strlen的对比一道关于sizeof的题 回调函数 回调函数就是一个通过函数指针调用的函数 如果你把函数的指针&#xff08;地址&#xff09;作为参数传递给另一个函数&#xff0c;当这个指…

Python小知识 - Python装饰器

Python装饰器 在Python中&#xff0c;装饰器是一个特殊的函数&#xff0c;可以将其他函数包装在装饰器函数中&#xff0c;并且将被包装的函数作为参数传递给装饰器函数。 使用装饰器的好处是可以自动在被包装的函数前后执行一些额外的代码&#xff0c;比如在函数执行前后打印日…

ClickHouse的Join算法

ClickHouse的Join算法 ClickHouse是一款开源的列式分析型数据库&#xff08;OLAP&#xff09;&#xff0c;专为需要超低延迟分析查询大量数据的场景而生。为了实现分析应用可能达到的最佳性能&#xff0c;分析型数据库&#xff08;OLAP&#xff09;通常将表组合在一起形成一个…

电脑文件批量重命名:高效操作技巧

随着时间的推移&#xff0c;我们积累的文件和文件夹数量越来越多&#xff0c;需要对它们进行合理的命名和管理&#xff0c;以便更方便地查找和利用。而文件批量重命名功能可以帮助我们更高效地管理文件夹。下面介绍五种方式&#xff0c;帮助你更好地利用文件批量重命名工具&…

ADASAPA场景设计分享

相信大家都对于ADAS与APA这两个车机功能都不陌生&#xff0c;对其场景设计过程可能并不是很清楚。今天小怿就跟大家分享一下自己的设计心得。 首先&#xff0c;我们来看一下ADAS和APA的定义&#xff0c;以便我们更好地了解其功能和应用场景。 ADAS定义 ADAS的全称叫Advanced …

Nosql数据库服务之redis

Nosql数据库服务之redis 一图详解DB的分支产品 Nosql数据库介绍 是一种非关系型数据库服务&#xff0c;它能解决常规数据库的并发能力&#xff0c;比如传统的数据库的IO与性能的瓶颈&#xff0c;同样它是关系型数据库的一个补充&#xff0c;有着比较好的高效率与高性能。 专…

视频讲解|3014 含分布式电源的配电网优化重构

目录 1 主要内容 2 讲解视频链接 3 部分程序 1 主要内容 该视频为程序目录中编号1034的讲解内容&#xff0c;该程序的链接为配电网优化重构matlab智能算法&#xff0c;本次重点讲解了基本环矩阵原理以及代码两步实现过程、如何利用基本环向量去创造可行解、粒子群优化过程、…

list【2】模拟实现(含迭代器实现超详解哦)

模拟实现list 引言&#xff08;实现概述&#xff09;list迭代器实现默认成员函数operator* 与 operator->operator 与 operator--operator 与 operator!迭代器实现概览 list主要接口实现默认成员函数构造函数析构函数赋值重载 迭代器容量元素访问数据修改inserterasepush_ba…

Kafka3.0.0版本——消费者(消费者组详细消费流程图解及消费者重要参数)

目录 一、消费者组详细消费流程图解二、消费者的重要参数 一、消费者组详细消费流程图解 创建一个消费者网络连接客户端&#xff0c;主要用于与kafka集群进行交互&#xff0c;如下图所示&#xff1a; 调用sendFetches发送消费请求&#xff0c;如下图所示&#xff1a; (1)、Fet…

【halcon】halcon字符识别——OCR

前言 OCR&#xff08;Optical Character Recongnition&#xff09;光学字符识别。 halcon 的OCR&#xff0c;提供了几种方式&#xff0c;我们应该如何选择&#xff1f; 自动文本阅读器&#xff08;find_text&#xff09;手动文本阅读器&#xff08;find_text&#xff09;自己…

Android USB电源管理

The USB peripheral detects the lack of 3 consecutive SOF packets as a suspend request from the USB host. 1 驱动shutdown顺序 系统关机或重启的过程中&#xff0c;会调用设备驱动的shutdown函数来完成设备的关闭操作&#xff0c;有需要的设备可以在驱动中定义该函数。其…

Python一行命令搭建HTTP服务器并外网访问 - 内网穿透

文章目录 1.前言2.本地http服务器搭建2.1.Python的安装和设置2.2.Python服务器设置和测试 3.cpolar的安装和注册3.1 Cpolar云端设置3.2 Cpolar本地设置 4.公网访问测试5.结语 1.前言 Python作为热度比较高的编程语言&#xff0c;其语法简单且语句清晰&#xff0c;而且python有…

射频功率放大器的指标有哪些内容

射频功率放大器是射频系统中至关重要的组件&#xff0c;用于放大射频信号的功率。本文将详细介绍射频功率放大器的指标&#xff0c;包括功率增益、带宽、线性度、效率、稳定性等关键指标。 一、功率增益 功率增益是射频功率放大器最基本的指标之一&#xff0c;表示放大器将输入…

taro h5 点击页面任意地方关闭弹窗组件 --- findDOMNode 判断点击节点是否属于某个组件

场景&#xff1a;如图&#xff0c;弹窗在大组件中&#xff0c;点击小组件显示弹窗&#xff0c;要求点击除弹窗外的任何元素都能关闭弹窗并且能执行元素原有的逻辑 方法一 最简单的是弹窗背后有一个覆盖整个页面的透明的cover, 点击直接关闭&#xff0c;但是这样虽然点击页面…

Spring最佳实践: 构建高效可维护的Java应用程序

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

【docker】私有仓库搭建

Docker 私有仓库搭建 在 Docker 中&#xff0c;当我们执行 docker pull xxx 的时候 &#xff0c;它实际上是从 registry.hub.docker.com 这个地址去查找&#xff0c;这就是Docker公司为我们提供的公共仓库。在工作中&#xff0c;我们不可能把企业项目push到公有仓库进行管理。…

试图替代 Python 的下一代AI编程语言:Mojo

文章目录 为什么叫 Mojo &#xff1f;Python 家族的一员&#xff0c;MojoPython 的好处&#xff1a;Python 兼容性Python 的问题移动和服务器部署&#xff1a;Python 子集和其他类似 Python 的语言&#xff1a; Mojo 是一种创新的编程语言&#xff0c;结合了 Python 的可用性和…

浅谈redis未授权漏洞

redis未授权漏洞 利用条件 版本比较高的redis需要修改redis的配置文件&#xff0c;将bind前面#注释符去掉&#xff0c;将protected-mode 后面改为no 写入webshell config get dir #查看redis数据库路径 config set dir web路径# #修改靶机Redis数据库路径 config set dbfilen…

基于SSM的人事管理信息系统

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

【笔试强训选择题】Day39.习题(错题)解析

作者简介&#xff1a;大家好&#xff0c;我是未央&#xff1b; 博客首页&#xff1a;未央.303 系列专栏&#xff1a;笔试强训选择题 每日一句&#xff1a;人的一生&#xff0c;可以有所作为的时机只有一次&#xff0c;那就是现在&#xff01;&#xff01;&#xff01;&#xff…