【Redis】3、Redis主从复制、哨兵、集群

Redis主从复制

主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。

默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

主从复制的作用

●数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
●故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
●负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
●高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

主从复制流程

1.从redis向主发送sync,请求同步数据
2.主redis会fork子进程,生成一个RDB文件(完全备份)
2.1

(1)若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。
(2)同时Master还会记录修改数据的所有命令并缓存在数据文件中。
(3)后台进程完成缓无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),存操作之后,Master机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。
(4)Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Master同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。

搭建Redis主从复制

实验环境

实验环境
master:192.168.220.101
slave1:192.168.220.102
slave2:192.168.220.103

所有主机安装redis

//环境准备
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config#修改内核参数
vim /etc/sysctl.conf
vm.overcommit_memory = 1
net.core.somaxconn = 2048sysctl -p

//安装redis
yum install -y gcc gcc-c++ maketar zxvf /opt/redis-7.0.9.tar.gz -C /opt/
cd /opt/redis-7.0.9
make
make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装。#创建redis工作目录
mkdir /usr/local/redis/{conf,log,data}cp /opt/redis-7.0.9/redis.conf /usr/local/redis/conf/useradd -M -s /sbin/nologin redis
chown -R redis.redis /usr/local/redis/#环境变量
vim /etc/profile 
PATH=$PATH:/usr/local/redis/bin		#增加一行source /etc/profile

//定义systemd服务管理脚本
vim /usr/lib/systemd/system/redis-server.service
[Unit]
Description=Redis Server
After=network.target[Service]
User=redis
Group=redis
Type=forking
TimeoutSec=0
PIDFile=/usr/local/redis/log/redis_6379.pid
ExecStart=/usr/local/redis/bin/redis-server /usr/local/redis/conf/redis.conf
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s QUIT $MAINPID
PrivateTmp=true[Install]
WantedBy=multi-user.target
修改 Redis 配置文件(Master节点操作)
vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0									#87行,修改监听地址为0.0.0.0
protected-mode no								#111行,将本机访问保护模式设置no
port 6379										#138行,Redis默认的监听6379端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"	#354行,指定日志文件
dir /usr/local/redis/data						#504行,指定持久化文件所在目录
#requirepass abc123								#1037行,可选,设置redis密码
appendonly yes									#1380行,开启AOFsystemctl restart redis-server.service
修改 Redis 配置文件(Slave节点操作)
vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0									#87行,修改监听地址为0.0.0.0
protected-mode no								#111行,将本机访问保护模式设置no
port 6379										#138行,Redis默认的监听6379端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"	#354行,指定日志文件
dir /usr/local/redis/data						#504行,指定持久化文件所在目录
#requirepass abc123								#1037行,可选,设置redis密码
appendonly yes									#1380行,开启AOF
replicaof 192.168.80.10 6379					#528行,指定要同步的Master节点IP和端口
#masterauth abc123								#535行,可选,指定Master节点的密码,仅在Master节点设置了requirepasssystemctl restart redis-server.service

验证主从效果

在Master节点上看日志:
tail -f /usr/local/redis/log/redis_6379.log 
Replica 192.168.80.11:6379 asks for synchronization
Replica 192.168.80.12:6379 asks for synchronization
Synchronization with replica 192.168.80.11:6379 succeeded
Synchronization with replica 192.168.80.12:6379 succeeded在Master节点上验证从节点:
redis-cli info replication
# Replication
role:master
connected_slaves:2
slave0:ip=192.168.80.11,port=6379,state=online,offset=1246,lag=0
slave1:ip=192.168.80.12,port=6379,state=online,offset=1246,lag=1

Redis 哨兵模式

主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。

哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。

哨兵模式的作用

●监控:哨兵会不断地检查主节点和从节点是否运作正常。

●自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。

●通知(提醒):哨兵可以将故障转移的结果发送给客户端。

客户端可以通过哨兵来查询被认证的master节点,和该节点下的所有slave节点

哨兵结构

哨兵结构由两部分组成,哨兵节点和数据节点:
●哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
●数据节点:主节点和从节点都是数据节点。

故障转移机制

1.由哨兵节点定期监控发现主节点是否出现了故障
每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

2.当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

3.由leader哨兵节点执行故障转移,过程如下:
●将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
●若原主节点恢复也变成从节点,并指向新的主节点;
●通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。


主节点的选举

1.过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
2.选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
3.选择复制偏移量最大,也就是复制最完整的从节点。


哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式

搭建Redis 哨兵模式

实验环境

Master节点:192.168.146.20
Slave1节点:192.168.146.50
Slave2节点:192.168.146.60systemctl stop firewalld
setenforce 0

修改 Redis 哨兵模式的配置文件(所有节点操作)

cp /opt/redis-7.0.9/sentinel.conf /usr/local/redis/conf/
chown redis.redis /usr/local/redis/conf/sentinel.conf

vim /usr/local/redis/conf/sentinel.conf
protected-mode no									#6行,关闭保护模式
port 26379											#10行,Redis哨兵默认的监听端口
daemonize yes										#15行,指定sentinel为后台启动
pidfile /usr/local/redis/log/redis-sentinel.pid		#20行,指定 PID 文件
logfile "/usr/local/redis/log/sentinel.log"			#25行,指定日志存放路径
dir /usr/local/redis/data							#54行,指定数据库存放路径
sentinel monitor mymaster 192.168.80.10 6379 2		#73行,修改 指定该哨兵节点监控192.168.80.10:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
#sentinel auth-pass mymaster abc123					#76行,可选,指定Master节点的密码,仅在Master节点设置了requirepass
sentinel down-after-milliseconds mymaster 3000		#114行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000

启动哨兵模式

先启master,再启slave
cd /usr/local/redis/conf/
redis-sentinel sentinel.conf &

查看哨兵信息

redis-cli -p 26379 info Sentinel
# Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.80.10:6379,slaves=2,sentinels=3

故障模拟

查看redis-server进程号
ps -elf | grep redis
杀死 Master 节点上redis-server的进程号
kill -9 uid号
验证结果
redis-cli -p 26379 INFO Sentinel

Redis 群集模式

集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。

集群由多组节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。


集群的作用

(1)数据分区:数据分区(或称数据分片)是集群最核心的功能。
        集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
        Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。

(2)高可用:集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

Redis集群的数据分片

Redis集群引入了哈希槽的概念
Redis集群有16384个哈希槽(编号0-16383)
集群的每组节点负责一部分哈希槽
每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作

#以3个节点组成的集群为例:
节点A包含0到5460号哈希槽
节点B包含5461到10922号哈希槽
节点C包含10923到16383号哈希槽

Redis集群的主从复制模型

集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。
为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用。


搭建Redis 群集模式

redis的集群一般需要6个节点,3主3从。方便起见,这里所有节点在同一台服务器上模拟:
以端口号进行区分:3个主节点端口号:6001/6002/6003,对应的从节点端口号:6004/6005/6006。

cd /usr/local/redis/
mkdir -p redis-cluster/redis600{1..6}for i in {1..6}
do
cp /opt/redis-7.0.9/redis.conf /usr/local/redis/redis-cluster/redis600$i
cp /opt/redis-7.0.9/src/redis-cli /opt/redis-7.0.9/src/redis-server /usr/local/redis/redis-cluster/redis600$i
done

开启群集功能

#其他5个文件夹的配置文件以此类推修改,注意6个端口都要不一样。
cd /usr/local/redis/redis-cluster/redis6001
vim redis.conf
#bind 127.0.0.1									#87行,注释掉bind项,默认监听所有网卡
protected-mode no								#111行,关闭保护模式
port 6001										#138行,修改redis监听端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6001.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6001.log"	#354行,指定日志文件
dir ./											#504行,指定持久化文件所在目录
appendonly yes									#1379行,开启AOF
cluster-enabled yes								#1576行,取消注释,开启群集功能
cluster-config-file nodes-6001.conf				#1584行,取消注释,群集名称文件设置
cluster-node-timeout 15000	

另外的5个节点服务器,他们的配置是一样的,注意修改端口号,PID文件,日志文件,群集名称文件

启动redis节点

分别进入那六个文件夹,执行命令:redis-server redis.conf ,来启动redis节点
cd /usr/local/redis/redis-cluster/redis6001
redis-server redis.conffor d in {1..6}
do
cd /usr/local/redis/redis-cluster/redis600$d
./redis-server redis.conf
doneps -ef | grep redis

启动集群

redis-cli --cluster create 127.0.0.1:6001 127.0.0.1:6002 127.0.0.1:6003 127.0.0.1:6004 127.0.0.1:6005 127.0.0.1:6006 --cluster-replicas 1#六个实例分为三组,每组一主一从,前面的做主节点,后面的做从节点。下面交互的时候 需要输入 yes 才可以创建。
--replicas 1 表示每个主节点有1个从节点。

测试群集

redis-cli -p 6001 -c					#加-c参数,节点之间就可以互相跳转
127.0.0.1:6001> cluster slots			#查看节点的哈希槽编号范围
1) 1) (integer) 54612) (integer) 10922									#哈希槽编号范围3) 1) "127.0.0.1"2) (integer) 6003									#主节点IP和端口号3) "fdca661922216dd69a63a7c9d3c4540cd6baef44"4) 1) "127.0.0.1"2) (integer) 6004									#从节点IP和端口号3) "a2c0c32aff0f38980accd2b63d6d952812e44740"
2) 1) (integer) 02) (integer) 54603) 1) "127.0.0.1"2) (integer) 60013) "0e5873747a2e26bdc935bc76c2bafb19d0a54b11"4) 1) "127.0.0.1"2) (integer) 60063) "8842ef5584a85005e135fd0ee59e5a0d67b0cf8e"
3) 1) (integer) 109232) (integer) 163833) 1) "127.0.0.1"2) (integer) 60023) "816ddaa3d1469540b2ffbcaaf9aa867646846b30"4) 1) "127.0.0.1"2) (integer) 60053) "f847077bfe6722466e96178ae8cbb09dc8b4d5eb"

127.0.0.1:6001> set name zhangsan
-> Redirected to slot [5798] located at 127.0.0.1:6003
OK127.0.0.1:6001> cluster keyslot name					#查看name键的槽编号redis-cli -p 6004 -c
127.0.0.1:6004> keys *							#对应的slave节点也有这条数据,但是别的节点没有
1) "name"redis-cli -p 6001 -c cluster nodes

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/130739.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux————ansible

一、认识自动化运维 自动化运维: 将日常IT运维中大量的重复性工作,小到简单的日常检查、配置变更和软件安装,大到整个变更流程的组织调度,由过去的手工执行转为自动化操作,从而减少乃至消除运维中的延迟,实现“零延时”…

时序预测 | MATLAB实现ELM极限学习机时间序列预测未来

时序预测 | MATLAB实现ELM极限学习机时间序列预测未来 目录 时序预测 | MATLAB实现ELM极限学习机时间序列预测未来预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现ELM极限学习机时间序列预测未来; 2.运行环境Matlab2018及以上,data为数…

【Redis专题】RedisCluster集群运维与核心原理剖析

目录 课程内容一、Redis集群架构模型二、Redis集群架构搭建(单机搭建)2.1 在服务器下新建各个节点的配置存放目录2.2 修改配置(以redis-8001.conf为例) 三、Java代码实战四、Redis集群原理分析4.1 槽位定位算法4.2 跳转重定位4.3 …

Ansible数组同步至Shell脚本数组中

1、ansible中定义数组,我以 ccaPojectList 数组为例子,如下图数组内容 2、需要写一个j2模板的Shell脚本,在j2模板的Shell脚本中引用ansible的 ccaPojectList 数组,大致如下图: {% for item in ccaPojectList %} "{{ item }…

探索程序员需要掌握的算法?

文章目录 一:引言二:常见算法介绍三:重点算法总结 🎉欢迎来到数据结构学习专栏~探索程序员需要掌握的算法? ☆* o(≧▽≦)o *☆嗨~我是IT陈寒🍹✨博客主页:IT陈寒的博客🎈该系列文章…

【漏洞库】Fastjson_1.2.47_rce

文章目录 漏洞描述漏洞编号漏洞评级影响版本漏洞复现- 利用工具- 漏洞环境- 漏洞扫描- 漏洞验证- 深度利用- GetShell- EXP 编写 漏洞挖掘- 寻找入口点- 指纹信息 修复建议- 漏洞修复 漏洞原理 漏洞描述 Fastjson是阿里巴巴公司开源的一款json解析器,其性能优越&am…

TCP服务器使用多路复用

启用复用的作用? 解决linux系统中的io阻塞问题,让多个阻塞io接口可以一起执行。无需开启线程,节省系统资源。 linux系统中的阻塞io有哪些? scanf、read管道、eadTcp套接字、acppet接收连接请求 有以下两种方式实现多路复用&am…

单位固定资产应该怎么管理

对于单位固定资产的管理,更是需要我们以创新的方式,以科技的手段,以严谨的态度来对待。那么,单位固定资产应该如何进行有效的管理呢? 建立一个完善的资产管理系统  我们需要建立一个完善的资产管理系统。这个系统应…

JS如何判断一个变量是否为数组类型?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 使用 Array.isArray() 方法⭐ 使用 instanceof 操作符⭐ 使用 Object.prototype.toString.call() 方法⭐ 使用 Array.from() 方法⭐ 使用 Array.prototype.isArray 属性(不推荐)⭐ 写在最后 ⭐ 专栏简介 前端入门之…

使用rpm重新安装包

#查询 rpm -qa | grep cloudstack #卸载 rpm -e cloudstack-agent-4.18.0.0-1.x86_64 #安装 rpm -ivh cloudstack-agent-4.18.0.0-1.x86_64.rpm

Mysql同步数据到Doris的踩坑过程

问题背景 由于项目需要,需要把多个Mysql数据库的数据同步到Doris数据库,然后利用Doris强调的计算和查询能力,来满足业务需求。有关Doris可以查看它的官方文档来了解它。 seatunnel的使用到放弃 缘起 从《第十届GIAC全球互联网架构大会》了…

《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》全文翻译

《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》- Chain-of-Thought Prompting Elicits Reasoning in Large Language Models 论文信息摘要1. 介绍2. 思维链提示3. 算术推理3.1 实验设置3.2 结果3.3 消融研究3.4 思想链的稳健性 4. 常识推理5. 符号…

win11本地连接没了怎么办

很多用户在使用win11系统时发现自己的网络连接没有了,遇到这种情况的话,我们应该怎么处理呢?我们可以尝试打开网络图标,下面就是小编整理出的教程,大家一起看看吧。 win11本地连接没了怎么办 方法一: 1、…

Python图像融合处理和 ROI 区域绘制基础

文章目录 一、图像融合二、图像 ROI 区域定位三、图像属性3.1 shape3.2 size3.3 dtype四、图像通道分离及合并4.1、split()函数4.2 merge()函数五、图像类型转换一、图像融合 图像融合通常是指多张图像的信息进行融合,从而获得信息更丰富的结果,能够帮助人们观察或计算机处理…

【echarts】如何将iconfont转换成echart所需的path路径 echarts折线图、柱状图如何设置自定义svg图标

步骤 下载iconfont图标到本地,用浏览器打开,右键查看源代码,或者用开发IDE软件打开,找到path d...,这个就是我们要传递给echart的icon的值。 代码示例: legend: {data: data?.map((item) > item.comp…

Java计算机毕业设计基于SpringBoot音乐网项目(附源码讲解)

目录 用户端 第一步:用户注册 第二步:用户登录 第三步:平台首页(可查看平台歌单、歌手详细信息操作等等) 第四步:查看歌单 第五步:歌单详情操作(歌单评价、歌单歌曲下载、歌单…

06-mq

1、消息队列有什么优点和缺点? 优点: 解耦、异步、削峰填谷。 缺点: 系统可用性降低 系统复杂性提高 一致性问题 2、常见消息队列的比较 3、Kafka的特性 1.消息持久化 2.高吞吐量 3.扩展性强(动态)4集群+4台集群…

前端使用H5中draggable实现拖拽排序效果

文章目录 一、实现代码二、实现效果 一、实现代码 <!DOCTYPE html> <style>* {padding: 0;margin: 0;}body {display: flex;width: 100%;height: 100vh;justify-content: center;align-items: center;}.list {display: flex;width: 336px;flex-wrap: wrap}.list-i…

虚拟机Ubuntu操作系统常用终端命令(1)(详细解释+详细演示)

虚拟机Ubuntu操作系统常用终端命令 本篇讲述了Ubuntu操作系统常用的三个功能&#xff0c;即归档&#xff0c;软链接和用户管理方面的相关知识。希望能够得到大家的支持。 文章目录 虚拟机Ubuntu操作系统常用终端命令二、使用步骤1.归档1.1创建档案包1.2还原档案包1.3归档并压缩…

Map和Set及其实现类详解

目录 一, 搜索 1,传统搜索 2,Map和Set模型 二, Map的使用 1,Map接口的继承及实现图 2,Map接口的使用 3,TreeMap和HashMap的使用和对比 1,TreeMap 代码示例 map中插入的数据按照key进行排序 map中插入的数据必须具有可比较性(或者实现了比较器相关接口) ​map中插入…