YOLO物体检测系列3:YOLOV3改进解读

🎈🎈🎈YOLO 系列教程 总目录

YOLOV1整体解读
YOLOV2整体解读

YOLOV3提出论文:《Yolov3: An incremental improvement》

1、YOLOV3改进

这张图讲道理真的过分了!!!我不是针对谁,在座的各位都是**
在这里插入图片描述
故意将yolov3画到了第二象限

  • 终于到V3了,最大的改进就是网络结构,使其更适合小目标检测
  • 特征做的更细致,融入多持续特征图信息来预测不同规格物体
  • 先验框更丰富了,3种scale,每种3个规格,一共9种
  • softmax改进,预测多标签任务
  1. yolo的思想就是一步预测,速度快,但是一直被质疑效果不好,这次改进了网络结构更加适合小目标检测
  2. yolo主要用的还是cnn,改进的地方还是在cnn上
  3. v1 2个框,v2做了一个聚类有5个框,v3 9个框
  4. 一个物体可能有多标签,比如哈士奇既是狗可别也是哈士奇类别

2、多scale方法与特征融合

  • 为了能检测到不同大小的物体,设计了3个scale

在这里插入图片描述
在v2版本中,将不同尺度的特征融合到了一起来满足多尺寸的物体检测,实际上效果并不好,v3版本中,将物体分为了三个尺寸(13,13)、(26,26)、(52,52),代表大、中、小三种尺寸的物体取预测。
(13,13),对应大物体,3个较大的候选框
(26,26),对应中等物体,3个略小的候选框
(52,52),对应小物体,3个较小的候选框

在yolov2中为了应对对小目标检测效果不好的情况,将最后一层卷积的特征图和倒数第二层做了融合,去预测。
在yolov3版本的做法是:

  1. 最后一层卷积的特征图尺寸是(13,13),记为结果A
  2. 倒数第二层卷积的特征图尺寸是(26,26),将结果A进行上采样至(26,26),融合在一起得到结果B
  3. 倒数第三层卷积的特征图尺寸是(52,52),将结果B进行上采样至(52,52),融合在一起得到结果C
  4. 结果A负责预测大物体,结果B负责预测中物体,结果C负责预测小物体

3、残差连接-为了更好的特征

在这里插入图片描述

  • 从今天的角度来看,基本所有网络架构都用上了残差连接的方法
  • V3中也用了resnet的思想,堆叠更多的层来进行特征提取

当年2016年resnet让深度学习真正变得深了起来,因为很多网络在堆叠到一定程度后,效果不仅没有上升反而下降,加上resnet的残差连接的思想,保证了堆叠不会出现效果下降的情况

4、网络架构

在这里插入图片描述

  • 没有池化和全连接层,全部卷积
  • 下采样通过stride为2实现
  • 3种scale,更多先验框
  • 基本上当下经典做法全融入了
  1. 在v2版本中去掉了所有的全连接层,在v3版本中所有的池化层也全部去掉了
  2. 下采样通过卷积步长为2来实现
  3. 红色部分从上到下依次对应小目标、中目标、大目标

整体就是利用残差网络得到三种不同输出的特征图,这三种不同特征图将之前的信息也融入进来
在这里插入图片描述

85的意思就是80+4+1,4是先验框的x、y、w、h,1是confidence判断是前景还是背景,80就是80个类别,这是自己定义的。

5、先验框改进设计

在这里插入图片描述

  • YOLO-V2中选了5个,这回更多了,一共有9种
  • 13*13特征图上:(116x90),(156x198),(373x326)
  • 26*26特征图上:(30x61),(62x45),(59x119)
  • 52*52特征图上:(10x13),(16x30),(33x23)

(116x90),(156x198),(373x326)对应大物体的先验框,用在13*13的特征图上,其他以此类推

6、softmax替代

  • 物体检测任务中可能一个物体有多个标签
  • logistic激活函数来完成,这样就能预测每一个类别是/不是
    在这里插入图片描述
    不管是在检测任务的标注数据集,还是在日常场景中,物体之间的相互覆盖都是不能避免的。因此一个锚点的感受野肯定会有包含两个甚至更多个不同物体的可能,在之前的方法中是选择和锚点IoU最大的Ground Truth作为匹配类别,用softmax作为激活函数。

YOLOv3多标签模型的提出,对于解决覆盖率高的图像的检测问题效果是十分显著的,YOLOv3的效果好很多,不仅检测的更精确,最重要的是被覆盖很多的物体也能很好的在YOLOv3中检测出来。

1、YOLOv3 使用的是logistic 分类器,而不是之前使用的softmax。

2、在YOLOv3 的训练中,便使用了Binary Cross Entropy ( BCE, 二元交叉熵) 来进行类别预测。

原因:
(1)softmax只适用于单目标多分类(甚至类别是互斥的假设),但目标检测任务中可能一个物体有多个标签。(属于多个类并且类别之间有相互关系),比如Person和Women。
(2)logistic激活函数来完成,这样就能预测每一个类别是or不是。

对于原始的输入,在给定的80个类别(假设是80),经过前面的网络提取后,最后的输出经过softmax,得到80个概率值,选取最高的那一个,就是预测结果,如果正确结果有两个(或者更多)

而用BCE来做呢?将所有的结果都进行二分类,即每一个类别都有两个概率值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/131830.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一点感受

做了两天企业数字化转型的评委,涉及全国最顶级的公司、最顶级的实际落地项目案例,由企业真实的落地团队亲自当面讲解。主要是为了了解了解真实的一线、真实的客户、真实的应用现状和应用水平。 (1)现状 我评审的涉及底层技术平台&…

JMeter-BeanShell预处理程序和BeanShell后置处理程序的应用

一、什么是BeanShell? BeanShell是用Java写成的,一个小型的、免费的、可以下载的、嵌入式的Java源代码解释器,JMeter性能测试工具也充分接纳了BeanShell解释器,封装成了可配置的BeanShell前置和后置处理器,分别是 BeanShell Pre…

想要精通算法和SQL的成长之路 - 受限条件下可到达节点的数目

想要精通算法和SQL的成长之路 - 受限条件下可到达节点的数目 前言一. 相交链表(邻接图和DFS) 前言 想要精通算法和SQL的成长之路 - 系列导航 一. 相交链表(邻接图和DFS) 原题链接 public int reachableNodes(int n, int[][] ed…

Linux下Minio分布式存储安装配置(图文详细)

文章目录 Linux下Minio分布式存储安装配置(图文详细)1 资源准备1.1 创建存储目录1.2 获取Minio Server资源1.3 获取Minio Client资源 2 Minio Server安装配置2.1 切换目录2.2 后台启动2.3 查看进程2.4 控制台测试 3 Minio Client安装配置3.1 切换目录3.2 移动mc脚本3.2 运行mc命…

LeetCode 39. Combination Sum【回溯,剪枝】中等

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…

cudnn-windows-x86_64-8.6.0.163_cuda11-archive 下载

网址不太好访问的话,请从下面我提供的分享下载 Download cuDNN v8.6.0 (October 3rd, 2022), for CUDA 11.x 此资源适配 cuda11.x 将bin和include文件夹里的文件,分别复制到C盘安装CUDA目录的对应文件夹里 安装cuda时自动设置了 CUDA_PATH_V11_8 及path C:\Progra…

数据结构——排序算法——快速排序

快速排序算法的基本思想是 1.从数组中取出一个数,称之为基数(pivot) 2.遍历数组,将比基数大的数字放到它的右边,比基数小的数字放到它的左边。遍历完成后,数组被分成了左右两个区域 3.将左右两个区域视为两…

leecode 每日一题 2596. 检查骑士巡视方案

2596. 检查骑士巡视方案 骑士在一张 n x n 的棋盘上巡视。在 有效 的巡视方案中,骑士会从棋盘的 左上角 出发,并且访问棋盘上的每个格子 恰好一次 。 给你一个 n x n 的整数矩阵 grid ,由范围 [0, n * n - 1] 内的不同整数组成,其…

记录selenium和chrome使用socks代理打开网页以及查看selenium的版本

使用前,首先打开socks5全局代理。 之前我还写过一篇关于编程中使用到代理的情况: 记录一下python编程中需要使用代理的解决方法_python 使用全局代理_小小爬虾的博客-CSDN博客 在本文中,首先安装selenium和安装chrome浏览器。 参考我的文章…

vue中实现瀑布流布局

父组件 <template><WaterfallFlow :list"list"/> </template><script setup lang"ts">import WaterfallFlow from "/components/WaterfallFlow.vue"; import {reactive} from "vue"; type listType {height…

向量范数及其Python代码

【向量范数】 向量由于既有大小又有方向&#xff0c;所以不能直接比较大小。 向量范数通过将向量转化为实数&#xff0c;然后进行向量的大小比较。 所以&#xff0c;向量范数是用于度量“向量大小”的量。 设向量 &#xff0c;则有&#xff1a; ● 向量的 范数&#xff1a; ●…

C语言入门Day_19 初识函数

目录 1.函数的定义 2.函数的调用 3.易错点 4.思维导图 前言&#xff1a; printf()我们已经很熟悉了&#xff0c;它有一个特定的功能&#xff0c;就是在屏幕上输出一行文字。之前的课程我们都称呼printf()为一个功能&#xff0c;实际上ta在编程中有个特定的名字——函数。 …

嵌入式学习笔记(28)按键和CPU的中断系统

按键的物理特性 (1)、平时没人按的时候&#xff0c;弹簧把按键按钮弹开。此时内部断开的。 (2)、有人按下的时候&#xff0c;手的力量克服弹簧的弹力&#xff0c;将按钮按下&#xff0c;此时内部保持接通&#xff08;闭合&#xff09;状态&#xff1b;如果手拿开&#xff0c;…

VSCode 安装使用教程 环境安装配置 保姆级教程

一个好用的 IDE 不仅能提升我们的开发效率&#xff0c;还能让我们保持愉悦的心情&#xff0c;这样才是非常 Nice 的状态 ^_^ 那么&#xff0c;什么是 IDE 呢 &#xff1f; what IDE&#xff08;Integrated Development Environment&#xff0c;集成开发环境&#xff09;是含代码…

线性代数的本质(十)——矩阵分解

文章目录 矩阵分解LU分解QR分解特征值分解奇异值分解奇异值分解矩阵的基本子空间奇异值分解的性质矩阵的外积展开式 矩阵分解 矩阵的因式分解是把矩阵表示为多个矩阵的乘积&#xff0c;这种结构更便于理解和计算。 LU分解 设 A A A 是 m n m\times n mn 矩阵&#xff0c;…

论文阅读 - Outlier detection in social networks leveraging community structure

目录 摘要 1. Introduction 2. Related works 3. Preliminaries 3.1. 模块化度量 3.2. Classes of outliers 3.2.1. 点异常 3.2.2. Contextual anomalies 3.2.3. Collective anomalies 3.3. Problem definition 3.4. Outliers score 4. Methodology 4.1. Proposed appr…

86 # express 基本实现

koa 和 express 的区别 koa 内部原理使用 es6 来编写的&#xff08;promise async await&#xff09;&#xff0c;express 是使用 es5 来编写的&#xff0c;内部是基于回调函数来实现express 内置了很多中间件&#xff08;功能会比 koa 强大一些&#xff0c;内部集成了路由&a…

OPENCV--实现meanshift图像分割

Meanshift原理 效果图 API # -*- coding:utf-8 -*- """ 作者:794919561 日期:2023/9/13 """ import cv2 import numpy as npimg = cv2.imread("F:\\learnOpenCV\\openCVLearning\\pictures\\Lena.jpg

过拟合、欠拟合、泛化误差、训练误差

模型容量的影响&#xff1a; 泛化误差&#xff1a; 当训练的模型的容量过了最优点时&#xff0c;泛化误差反而升高&#xff0c;这是由于模型过于关注细节导致&#xff0c;模型也同时记住噪声&#xff1b;当拿来一个真的数据时&#xff0c;模型会被一些无关紧要的细节所干扰。 …

ASP.NET dotnet 3.5 实验室信息管理系统LIMS源码

技术架构&#xff1a;ASP.NET dotnet 3.5 LIMS作为一个信息管理系统&#xff0c;它有着和ERP、MIS之类管理软件的共性&#xff0c;如它是通过现代管理模式与计算机管理信息系统支持企业或单位合理、系统地管理经营与生产&#xff0c;最大限度地发挥现有设备、资源、人、技术的…