【JVM 内存结构丨堆】

  • 定义
  • 内存分配
    • 特点:
      • 分代结构
      • 对象分配过程
      • Full GC /Major GC 触发条件
      • 引用方式
      • 堆参数
      • 堆内存实例

在这里插入图片描述

主页传送门:📀 传送

定义


  JVM(Java Virtual Machine)堆是Java应用程序运行时内存管理的重要组成部分之一。堆内存用于存储Java对象实例,这些对象在运行时被动态分配和管理。

  一个 JVM 实例只存在一个堆内存,堆内存的大小是可调节的。它取决于应用程序的需求和JVM的配置。

内存分配


  1. 新生代(Young Generation):新生代是JVM堆的一小部分,通常占整个堆的1/10到1/4。它主要用于存储新创建的对象。新生代又可以分为Eden区和两个Survivor区(S0和S1)。大多数对象都在Eden区中创建,当Eden区满时,会触发Minor GC,将还存活的对象移动到Survivor区。
  2. 老年代(Old Generation):老年代是JVM堆的另一部分,用于存储长时间存活的对象。当Eden区或Survivor区中的对象经过一定次数的GC后仍然存活,或者大对象直接在老年代中创建,就会触发Major GC。
  3. 永久代(PermGen)或元空间(Metaspace):jdk7之前有永久代,DK 8之后这个部分被元空间替代。永久代用于存储JVM字节码和类的元数据。元空间则是将这部分内存抽象出来,让JVM在堆外进行分配,以减轻堆内存的压力。
  4. 方法区(Method Area):方法区是用来存储已被加载的类信息、常量、静态变量以及即时编译器编译后的代码等数据。方法区的内存回收目标主要针对常量池的回收和对类型的卸载。

图解如下:
在这里插入图片描述

特点:


  • 线程共享,整个 Java 虚拟机只有一个堆,所有的线程都访问同一个堆。(程序计数器、Java 虚拟机栈、本地方法栈都是一个线程对应一个。)
  • 在虚拟机启动时创建。(当运行Java应用程序时,JVM会启动,并在内存中分配一块区域来作为堆内存。这个过程发生在JVM启动的早期阶段,通常在执行java命令启动Java程序的时候。且一旦堆内存被创建,它就会在整个Java应用程序的生命周期中存在,直到应用程序结束或JVM关闭。)
  • 是垃圾回收的主要场所。(JVM的垃圾回收器定期扫描堆中的对象,找到不再被引用的对象,并释放它们的内存。)

分代结构

  • 堆可分为新生代(Eden 区:From Survior,To Survivor)、老年代。

  • 新生代用于存储新创建的对象,而老年代用于存储存活时间较长的对象。

  • Java 虚拟机规范规定,堆可以处于物理上不连续的内存空间中,但在逻辑上它应该被视为连续的。

  • 关于 Survivor s0,s1 区: 复制之后有交换,谁空谁是 to。

  • 老年代比新生代生命周期长。

  • 新生代与老年代空间默认比例 1:2:JVM 调参数,XX:NewRatio=2,表示新生代占 1,老年代占 2,新生代占整个堆的 1/3。

  • Eden 空间和另外两个 Survivor 空间缺省所占的比例是:8:1:1。

  • 几乎所有的 Java 对象都是在 Eden 区被 new 出来的,Eden 放不了的大对象,就直接进入老年代了。

对象分配过程


  • new 的对象先放在 Eden 区,大小有限制
  • 如果创建新对象时,Eden 空间填满了,就会触发 Minor GC,将 Eden 不再被其他对象引用的对象进行销毁,再加载新的对象放到 Eden 区,特别注意的是 Survivor 区满了是不会触发 Minor GC 的,而是 Eden 空间填满了,Minor GC 才顺便清理 Survivor 区
  • 将 Eden 中剩余的对象移到 Survivor0 区
  • 再次触发垃圾回收,此时上次 Survivor 下来的,放在 Survivor0 区的,如果没有回收,就会放到 Survivor1 区
  • 再次经历垃圾回收,又会将幸存者重新放回 Survivor0 区,依次类推
  • 默认是 15 次的循环,超过 15 次,则会将幸存者区幸存下来的转去老年区 jvm 参数设置次数 : -XX:MaxTenuringThreshold=N 进行设置
  • 频繁在新生区收集,很少在养老区收集,几乎不在永久区/元空间搜集

Full GC /Major GC 触发条件


  • 显示调用System.gc(),老年代的空间不够,方法区的空间不够等都会触发 Full GC,同时对新生代和老年代回收,FUll GC 的 STW 的时间最长,应该要避免
  • 在出现 Major GC 之前,会先触发 Minor GC,如果老年代的空间还是不够就会触发 Major GC,STW 的时间长于 Minor GC

引用方式


四种引用方式

  • 强引用:创建一个对象并把这个对象赋给一个引用变量,普通 new 出来对象的变量引用都是强引用,有引用变量指向时永远不会被垃圾回收,jvm 即使抛出 OOM,可以将引用赋值为 null,那么它所指向的对象就会被垃圾回收。
  • 软引用:如果一个对象具有软引用,内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。
  • 弱引用:非必需对象,当 JVM 进行垃圾回收时,无论内存是否充足,都会回收被弱引用关联的对象。
  • 虚引用:虚引用并不会决定对象的生命周期,如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收器回收。

堆参数


参数说明示例
-Xms设置初始堆大小。-Xms256m表示初始堆大小为256MB。默认值通常是较小的值,例如32MB。
-Xmx设置最大堆大小。-Xmx1024m表示最大堆大小为1GB。根据应用程序的需求,可以调整这个值。一般此值建议与-Xmx相同,避免每次垃圾回收完成后JVM重新分配内存
-Xmn设置新生代的大小。(新生代是堆的一部分,用于存储新创建的对象。)-Xmn256m表示新生代大小为256MB。
-XX:MaxPermSize(在Java 7之前)指定永久代(Permanent Generation)的最大大小。永久代用于存储类的元数据信息等。-XX:MaxPermSize=128m表示永久代最大为128MB。
-XX:MaxMetaspaceSize(Java 8及以后)指定元空间(Metaspace)的最大大小。元空间取代了永久代,用于存储类的元数据信息。-XX:MaxMetaspaceSize=256m表示元空间最大为256MB。
-XX:PermSize(在Java 7之前)指定永久代的初始大小。-XX:PermSize=64m表示永久代的初始大小为64MB。
-XX:MetaspaceSize(Java 8及以后)指定元空间的初始大小。-XX:MetaspaceSize=128m表示元空间的初始大小为128MB。
-XX:NewRatio=设置新生代和老年代的大小比例。-XX:NewRatio=2表示新生代大小为老年代大小的1/3。
-XX:SurvivorRatio=设置新生代中Eden区和Survivor区的大小比例。-XX:SurvivorRatio=8表示Eden区大小是Survivor区大小的8倍。
-XX:+UseSerialGC使用串行垃圾回收器适用于单线程应用程序。
-XX:+UseParallelGC使用并行垃圾回收器。适用于多核处理器的应用程序。
-XX:+UseConcMarkSweepGC使用CMS(Concurrent Mark-Sweep)垃圾回收器。适用于需要降低垃圾回收停顿时间的应用程序。

堆内存实例

public class HeapMemoryExample {public static void main(String[] args) {// 创建一个数组对象并分配到堆内存中int[] numbers = new int[1000];// 堆内存中的对象可以动态修改for (int i = 0; i < numbers.length; i++) {numbers[i] = i * 2;}// 创建一个字符串对象并分配到堆内存中String greeting = "Hello, World!";// 堆内存中的对象可以通过引用来访问System.out.println(greeting);// 创建自定义对象并分配到堆内存中Person person1 = new Person("Alice", 25);Person person2 = new Person("Bob", 30);// 堆内存中的对象可以相互引用person1.setFriend(person2);person2.setFriend(person1);}
}class Person {private String name;private int age;private Person friend;public Person(String name, int age) {this.name = name;this.age = age;}public void setFriend(Person friend) {this.friend = friend;}
}

  上面的示例中创建了一个整数数组、一个字符串和自定义的Person对象,并将它们分配到堆内存中。堆内存中的对象可以通过引用来访问,可以进行动态修改和相互引用。这些对象的内存管理由JVM的垃圾回收器负责,不需要手动释放内存。

在这里插入图片描述

  如果喜欢的话,欢迎 🤞关注 👍点赞 💬评论 🤝收藏  🙌一起讨论你的支持就是我✍️创作的动力!					  💞💞💞

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/133934.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度思考ES面经

1 推荐文章 2万字详解&#xff0c;吃透 Elasticsearch 2 什么是倒排索引&#xff0c;为什么这么叫&#xff1f; 倒排索引&#xff08;Inverted Index&#xff09;是一种为快速全文搜索而设计的数据结构。它被广泛应用于搜索引擎&#xff0c;其中 Elasticsearch&#xff08;简…

CVPR2023 RIFormer, 无需TokenMixer也能达成SOTA性能的极简ViT架构

编辑 | Happy 首发 | AIWalker 链接 | https://mp.weixin.qq.com/s/l3US8Dsd0yNC19o7B1ZBgw project, paper, code Token Mixer是ViT骨干非常重要的组成成分&#xff0c;它用于对不同空域位置信息进行自适应聚合&#xff0c;但常规的自注意力往往存在高计算复杂度与高延迟问题。…

软文推广在企业中运用的优势有哪些?

随着互联网的发展&#xff0c;越来越多的企业在推广方式上已经逐渐脱离于传统媒体&#xff0c;软文推广已经成为了企业宣传的主要方式。也有不少企业来找盒子进行推广&#xff0c;接下来媒介盒子就来告诉大家&#xff0c;企业进行软文推广的优势有哪些&#xff1f; 成本低 传统…

ELK 企业级日志分析系统 ELFK

目录 一、概述 二、组件介绍 2.1、ElasticSearch 2.2、Kiabana 2.3、Logstash 2.4、可以添加的其它组件&#xff1a;Filebeat 2.5、缓存/消息队列&#xff08;redis、kafka、RabbitMQ等&#xff09; 2.6、Fluentd 三、ELK工作原理 四、实例演示 1.ELK之 部署"E&q…

Leetcode 剑指Offer

求 12...n &#xff0c;要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句&#xff08;A?B:C&#xff09;。 示例 1&#xff1a; 输入: n 3 输出: 6示例 2&#xff1a; 输入: n 9 输出: 45 一、信息 1.求一个等差数列的求和 2.要求不能使…

lua环境搭建数据类型

lua作为一门计算机语言&#xff0c;从语法角度个人感觉还是挺简洁的接下来我们从0开始学习lua语言。 1.首先我们需要下载lua开发工具包 在这里我们使用的工具是luadist 下载链接为&#xff1a;https://luadist.org/repository/下载后的压缩包解压后就能用。 2.接下来就是老生…

ARM 相关概念2

一、汇编中三种符号&#xff08;汇编指令、伪指令、伪操作&#xff09; 二、汇编基本格式 三、数据操作指令 3.1 数据搬移指令mov/mvn ① 示例 ② 立即数 0xff000000 >判断的数 1111 1111 0000 0000 0000 0000 0000 0000 >判断的数 0000 0000 0000 0000 0000 0000 1111…

企业架构LNMP学习笔记51

企业案例使用&#xff1a; 主从模式&#xff1a; 缓存集群结构示意图&#xff1a; 去实现Redis的业务分离&#xff1a; 读的请求分配到从服务器上&#xff0c;写的请求分配到主服务器上。 Redis是没有中间件来进行分离的。 是通过业务代码直接来进行读写分离。 准备两台虚…

华为云云耀云服务器L实例评测|部署前后端分离项目

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a; 学习测评 ✨特色专栏&#xff1a; MyS…

2022年全国研究生数学建模竞赛华为杯D题PISA架构芯片资源排布问题求解全过程文档及程序

2022年全国研究生数学建模竞赛华为杯 D题 PISA架构芯片资源排布问题 原题再现&#xff1a; 一、背景介绍 芯片是电子行业的基础&#xff0c;在当前日益复杂的国际形势下&#xff0c;芯片成了各个大国必争的高科技技术。本课题关注网络通信领域的交换芯片&#xff0c;传统的交…

Python爬虫逆向猿人学刷题系列——第七题

题目&#xff1a;采集这5页中胜点列的数据&#xff0c;找出胜点最高的召唤师&#xff0c;将召唤师姓名填入答案中 地址&#xff1a;https://match.yuanrenxue.cn/match/7 本题主要是考察字体的动态变化&#xff0c;同样也是从字体文件下手构造出映射关系就好&#xff0c;但本题…

TuyaOS开发学习笔记(2)——NB-IoT开发SDK架构、运行流程

一、SDK架构 1.1 架构框图 基于 TuyaOS 系统&#xff0c;可以裁剪得到的适用于 NB-IoT 协议产品接入的 SDK。SDK 将设备配网、上下行数据通信、产测授权、固件 OTA 升级等接口进行封装&#xff0c;并提供相关函数。 1.2 目录结构 1.2.1 TuyaOS目录说明 adapter&#xff1a;T…

70、Spring Data JPA 的 自定义查询(全手动,自己写完整 SQL 语句)

1、方法名关键字查询&#xff08;全自动&#xff0c;既不需要提供sql语句&#xff0c;也不需要提供方法体&#xff09; 2、Query查询&#xff08;半自动&#xff1a;提供 SQL 或 JPQL 查询&#xff09; 3、自定义查询&#xff08;全手动&#xff09; ★ 自定义查询&#xff08…

范文展示,如何三步写出一篇满意的论文

第一步&#xff1a;输入文章关键信息 文章标题&#xff0c;写论文的话即为拟定的论文标题&#xff0c;例如这篇范文中的题目为“阳明心学研究” 关键词&#xff0c;可以写出多个论文主题相关的关键词&#xff0c;用逗号分开&#xff0c;例如这篇范文中只写了一个关键词“王阳…

9.12 C++作业

实现一个图形类&#xff08;Shape&#xff09;&#xff0c;包含受保护成员属性&#xff1a;周长、面积&#xff0c; 公共成员函数&#xff1a;特殊成员函数书写 定义一个圆形类&#xff08;Circle&#xff09;&#xff0c;继承自图形类&#xff0c;包含私有属性&#xff1a;半…

长城网络靶场第三题

关卡描述&#xff1a;1.oa服务器的内网ip是多少&#xff1f; 先进行ip统计&#xff0c;开始逐渐查看前面几个ip 基本上都是b/s&#xff0c;所以大概率是http&#xff0c;过滤一下ip 第一个ip好像和oa没啥关系 第二个ip一点开就是 oa&#xff0c;应该就是他了。 关卡描述&a…

指针-子串逆置

任务描述 从标准输入上读入以空格分隔的字符串 s 和 t&#xff0c;将 s 中与 t 匹配的所有子串逆置后再输出 s&#xff0c;当 s 中无与 t 匹配的子串时直接输出字符串 s。已经匹配的字符不会再重复匹配。 相关知识 参考之前的关卡。 编程要求 根据提示&#xff0c;在右侧编…

Golang编写自定义IP限流中间件

目录 基于令牌桶的限流算法实现高并发限流&#xff08;使用golang官方限流器&#xff09;Go代码测试记录ab -t 1 -c 1 http://127.0.0.1:8080/api/resource结果预测&#xff1a;1秒内最多生成10个令牌&#xff0c;而总共有20个串行的请求&#xff0c;结果应该是1个成功&#xf…

CentOS 7.6使用mysql-8.0.31-1.el7.x86_64.rpm-bundle.tar安装Mysql 8.0

https://downloads.mysql.com/archives/community/是社区版的官网&#xff0c;可以选择版本下载。 cat /etc/redhat-release可以看到系统版本是CentOS Linux release 7.6.1810 (Core)&#xff0c;uname -r可以看到版本是3.10.0-957.el7.x86_64。 yum remove -y mysql-libs把…

来看看Python MetaClass元类详解

MetaClass元类&#xff0c;本质也是一个类&#xff0c;但和普通类的用法不同&#xff0c;它可以对类内部的定义&#xff08;包括类属性和类方法&#xff09;进行动态的修改。可以这么说&#xff0c;使用元类的主要目的就是为了实现在创建类时&#xff0c;能够动态地改变类中定义…