爬虫 — Scrapy 框架(一)

目录

  • 一、介绍
    • 1、同步与异步
    • 2、阻塞与非阻塞
  • 二、工作流程
  • 三、项目结构
    • 1、安装
    • 2、项目文件夹
      • 2.1、方式一
      • 2.2、方式二
    • 3、创建项目
    • 4、项目文件组成
      • 4.1、piders/__ init __.py
      • 4.2、spiders/demo.py
      • 4.3、__ init __.py
      • 4.4、items.py
      • 4.5、middlewares.py
      • 4.6、pipelines.py
      • 4.7、settings.py
      • 4.8、scrapy.cfg
    • 5、运行项目
      • 5.1、方式一
      • 5.2、方式二
  • 四、入门案例
  • 五、翻页
  • 六、parsel 第三方库
    • 1、css 选择器
    • 2、xpath
    • 3、re
  • 七、案例

一、介绍

Scrapy 是一个为了爬取网站数据,提取结构性数据而编写的应用框架。可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。

点击进入官网

1、同步与异步

同步:指的是按照代码的顺序依次执行,每个任务都要等待上一个任务完成后才能执行,处理大量任务或耗时操作时可能导致程序性能下降。

异步一个任务的执行不会影响到后续任务的执行,允许程序在等待某个操作完成的同时执行其它任务,提高了程序的并发性和性能。

2、阻塞与非阻塞

阻塞:指的是当一个任务执行一个 I/O 操作时,任务会一直等待直到操作完成才能继续执行后续代码,当任务发起一个 I/O 操作(如读取文件、发送网络请求等),任务会被挂起,直到操作完成后才能恢复执行,可能会造成资源浪费和程序响应性下降。

非阻塞:指的是当一个任务执行一个 I/O 操作时,任务不会等待操作完成,而是立即返回并继续执行后续代码,当任务发起一个 I/O 操作,如果操作不能立即完成,任务不会被挂起,而是继续执行后续代码,提高了程序的并发性和响应性。

二、工作流程

在这里插入图片描述

各组件作用

组件作用是否需要手写
引擎(Scrapy Engine)总指挥:负责数据和信号的在不同模块间的传递Scrapy 已经实现
调度器(Scheduler)一个队列,存放引擎发过来的 request 请求Scrapy 已经实现
下载器(Downloader)下载把引擎发过来的 request 请求,并返回给引擎Scrapy 已经实现
爬虫(Spider)处理引擎发过来的 request,提取数据,提取 url,并交给引擎需要手写
管道(Item Pipline)处理引擎传过来的数据,比如存储需要手写
下载中间件(Downloader Middlewares)可以自定义的下载扩展,比如设置 User-Agent 代理一般不用手写
爬虫中间件(Spider Middlewares)可以自定义 requests 请求和进行 requests 过滤一般不用手写

大概流程

  • 爬虫(Spider)发起初始请求。
  • 下载器(Downloader)下载网页并将响应返回给爬虫(Spider)。
  • 爬虫(Spider)解析响应,提取数据和新的请求。
  • 新的请求由调度器(Scheduler)进行调度,并交给下载器(Downloader)下载。
  • 数据由爬虫(Spider)交给管道(Item Pipline)进行处理。

三、项目结构

1、安装

在终端输入命令:

pip install scrapy==2.5.1

2、项目文件夹

2.1、方式一

在目标文件夹地址栏直接输入 cmd 后,按回车。

在这里插入图片描述

2.2、方式二

按 win + r 弹出一个窗口,输入 cmd 命令后按回车,会进入终端,输入命令,进入目标文件夹。

切换盘符:

f:

切换到目标文件夹:

cd F:\Python

在这里插入图片描述

3、创建项目

scrapy startproject mySpider

scrapy startproject 是创建一个爬虫项目的固定命令,mySpider 是项目名称,可更改。

cd mySpider

切换到项目文件夹

scrapy genspider demo baidu.com

scrapy genspider 是生成爬虫文件的固定命令,demo 是爬虫文件名,可更改,baidu.com 是爬取的域名,可更改。

在这里插入图片描述

4、项目文件组成

4.1、piders/__ init __.py

这是一个空的 __ init __.py 文件,用于标识 spiders 目录为一个 Python 包。在该目录中,通常存放着 Scrapy 框架中的爬虫(Spider)模块文件。

4.2、spiders/demo.py

这是一个爬虫(Spider)模块文件,包含了定义一个名为 demo 的 Spider 类的代码。该 Spider 类定义了如何发起请求、解析响应和提取数据的逻辑。

4.3、__ init __.py

这是一个空的 __ init __.py 文件,用于标识当前目录为一个 Python 包。

4.4、items.py

这是一个模型(Model)模块文件,用于定义抓取的数据结构。通常,可以在该文件中定义一个名为 Item 的类,描述要抓取的数据的字段和结构。

4.5、middlewares.py

这是一个中间件(Middleware)模块文件,用于定义 Scrapy 框架中的中间件组件。中间件可以在请求和响应的处理过程中进行自定义操作,例如修改请求头、处理代理等。

4.6、pipelines.py

这是一个管道(Pipeline)模块文件,用于定义 Scrapy 框架中的数据处理管道组件。管道负责对爬取的数据进行处理,例如数据清洗、验证和存储等操作。

4.7、settings.py

这是一个配置(Settings)模块文件,包含了 Scrapy 框架的配置选项。可以在该文件中设置爬虫的参数、中间件、管道以及其它框架相关的设置。

4.8、scrapy.cfg

这是 Scrapy 项目的配置文件,包含了项目的基本配置信息,如项目名称、启用的爬虫、管道和中间件等。

5、运行项目

5.1、方式一

在终端运行

scrapy crawl demo  # demo 是爬虫文件的名字

5.2、方式二

在当前项目下创建一个 py 文件

from scrapy import cmdline# demo 是爬虫文件的名字
cmdline.execute('scrapy crawl demo'.split())

四、入门案例

目标网站:https://quotes.toscrape.com/

需求:翻页爬取每页的名人,名言,标签

页面分析

1、先获取第一页数据,再实现翻页爬取

2、确定 url,通过分析,可以在源码中看到数据,确定数据是静态加载,所以目标 url 为 https://quotes.toscrape.com/

3、确定数据在网页中的位置,通过 xpath 解析

3.1、每一条数据都存放在 <div class="quote"></div> 标签里面,所以 xpath 语法://div[@class="quote"],返回一个元素列表,进行遍历

3.2、名言 xpath 语法为:.//span[1]/text()

3.3、作者 xpath 语法为:.//span[2]/small[1]/text()

3.4、标签 xpath 语法为:.//div[1]/a/text()

项目实现

1、打开终端,进入对应的文件目录下

2、创建 Scrapy 项目:scrapy startproject my_scrapy

3、进入项目:cd my_scrapy

4、创建爬虫文件:scrapy genspider spider quotes.toscrape.com

代码实现

1、在项目目录下创建一个 start.py 文件,用来运行项目。

注意:一定要在 start.py 文件下运行,在其它项目文件下运行,该项目不生效。

# start.py
# 使用 cmdline 模块来执行命令行命令
from scrapy import cmdline# 使用 Scrapy 执行名为 spider 的爬虫
cmdline.execute('scrapy crawl spider'.split())

执行后会打印红色的日志信息,可在 settings.py 文件里设置隐藏日志信息。

# settings.py
# 日志级别调整为警告
LOG_LEVEL = 'WARNING'

2、获取网页源代码,在 spider.py 文件里做相关操作。

# spider.py
import scrapy  # 导入 Scrapy 库,用于构建爬虫# 定义一个爬虫类
class SpiderSpider(scrapy.Spider):# 爬虫的名称name = 'spider'# 允许爬取的域名allowed_domains = ['quotes.toscrape.com']# 起始 urlstart_urls = ['https://quotes.toscrape.com/']# 解析函数,处理响应并提取数据def parse(self, response):# 打印响应结果print(response.text)

3、创建项目的相关数据结构,在 items.py 文件里做相关操作。

# items.py
import scrapy  # 导入Scrapy库,用于构建爬虫# 自定义的Item类,用于存储爬取的数据
class MyScrapyItem(scrapy.Item):# define the fields for your item here like:# name = scrapy.Field()# 名言text = scrapy.Field()  # 用于存储名言文本内容的字段# 名人author = scrapy.Field()  # 用于存储名人文本内容的字段# 标签tags = scrapy.Field()  # 用于存储标签文本内容的字段

4、确定获取到源码之后,在 spider.py 文件里做解析。

# spider.py
import scrapy  # 导入 Scrapy 库,用于构建爬虫
from my_scrapy.items import MyScrapyItem  # 导入自定义的 Item 类,用于存储爬取的数据# 定义一个爬虫类
class SpiderSpider(scrapy.Spider):# 爬虫的名称name = 'spider'# 允许爬取的域名allowed_domains = ['quotes.toscrape.com']# 起始 urlstart_urls = ['https://quotes.toscrape.com/']# 解析函数,处理响应并提取数据def parse(self, response):# 使用 XPath 选取所有 class 为 quote 的 div 元素divs = response.xpath('//div[@class="quote"]')# 遍历每个 div 元素for div in divs:# 创建一个 MyScrapyItem 实例,用于存储爬取的数据item = MyScrapyItem()# 获取名言文本item['text'] = div.xpath('.//span[1]/text()').get()# 获取名人文本item['author'] = div.xpath('.//span[2]/small[1]/text()').get()# 获取标签文本item['tags'] = div.xpath('.//div[1]/a/text()').getall()# 打印数据print(item)

注意:在 Scrapy 框架里,get() 返回一条数据,getall() 返回多条数据。

5、确定当前数据获取到之后,进行翻页获取其它数据。

# spider.py
import scrapy  # 导入 Scrapy 库,用于构建爬虫
from my_scrapy.items import MyScrapyItem  # 导入自定义的 Item 类,用于存储爬取的数据# 定义一个爬虫类
class SpiderSpider(scrapy.Spider):# 爬虫的名称name = 'spider'# 允许爬取的域名allowed_domains = ['quotes.toscrape.com']# 起始 urlstart_urls = ['https://quotes.toscrape.com/']# 解析函数,处理响应并提取数据def parse(self, response):# 使用 XPath 选取所有 class 为 quote 的 div 元素divs = response.xpath('//div[@class="quote"]')# 遍历每个 div 元素for div in divs:# 创建一个 MyScrapyItem 实例,用于存储爬取的数据item = MyScrapyItem()# 获取名言文本item['text'] = div.xpath('.//span[1]/text()').get()# 获取名人文本item['author'] = div.xpath('.//span[2]/small[1]/text()').get()# 获取标签文本item['tags'] = div.xpath('.//div[1]/a/text()').getall()# 返回 item,将其传递给引擎yield item# 翻页爬取,获取下一页按钮next = response.xpath('//li[@class="next"]/a/@href').get()# 拼接下一页链接# 方法一:# url = self.start_urls[0] + next# 方法二:url = response.urljoin(next)# 发起一个新的请求,url 为 next 的绝对 url,并将响应交给 parse 方法处理yield scrapy.Request(url, callback=self.parse)

注意:
正常操作运行项目,代码可能会有报错,这个时候可以考虑是不是允许爬取的域名做了限制,可以将 allowed_domains =[‘quotes.toscrape.com’] 注释掉。

6、保存数据

6.1、方法一

可以在 start.py 文件直接进行保存。

# start.py
# 使用 cmdline 模块来执行命令行命令
from scrapy import cmdline# 使用 Scrapy 执行名为 spider 的爬虫
# cmdline.execute('scrapy crawl spider'.split())# 使用 Scrapy 执行名为 spider 的爬虫,并将结果保存到 demo.csv 文件中
cmdline.execute('scrapy crawl spider -o demo.csv'.split())

6.2、方法二

可以在管道里面保存数据。

# pipelines.py
# 自定义的管道类
class MyScrapyPipeline:# 处理 Item 的方法,负责将数据存储到文件中def process_item(self, item, spider):# 保存数据with open('demo.txt', 'a', encoding='utf-8') as f:# 将 item 中的 text 字段和 author 字段拼接为一个字符串s = item['text'] + item['author']# 将拼接后的字符串写入文件,并在末尾添加换行符f.write(s + '\n')# 返回 item,继续后续的处理过程return item

注意:在管道里面保存数据,要记得在 setting.py 里启用管道,找到以下代码并取消注释。

ITEM_PIPELINES = {'my_scrapy.pipelines.MyScrapyPipeline': 300,
}

五、翻页

目标网站:https://quotes.toscrape.com/

需求:翻页爬取前4页的名人,名言,标签

分析

需要重新构造 url

第一页:https://quotes.toscrape.com/page/1/

第二页:https://quotes.toscrape.com/page/2/

第三页:https://quotes.toscrape.com/page/3/

第四页:https://quotes.toscrape.com/page/4/

方法一:

# spider.py
import scrapy  # 导入 Scrapy 库,用于构建爬虫
from my_scrapy.items import MyScrapyItem  # 导入自定义的 Item 类,用于存储爬取的数据# 定义一个爬虫类
class SpiderSpider(scrapy.Spider):# 爬虫的名称name = 'spider'# 爬虫的名称allowed_domains = ['quotes.toscrape.com']# 页码page = 1# 链接 urlbase_url = 'https://quotes.toscrape.com/page/{}/'# 起始 urlstart_urls = [base_url.format(page)]# 解析函数,处理响应并提取数据def parse(self, response):# 使用 XPath 选取所有 class 为 quote 的 div 元素divs = response.xpath('//div[@class="quote"]')# 遍历每个 div 元素for div in divs:# 创建一个 MyScrapyItem 实例,用于存储爬取的数据item = MyScrapyItem()# 获取名言文本item['text'] = div.xpath('.//span[1]/text()').get()# 获取名人文本item['author'] = div.xpath('.//span[2]/small[1]/text()').get()# 获取标签文本item['tags'] = div.xpath('.//div[1]/a/text()').getall()# 返回 item,将其传递给引擎yield item# 判断页码if self.page <= 4:# 页码self.page = self.page + 1# 获取数据yield scrapy.Request(self.base_url.format(self.page), callback=self.parse) # callback是回调函数,相当于是发完请求,在那个方法中解析

方法二:
重写内部的方法实现翻页。

# spider.py
import scrapy  # 导入 Scrapy 库,用于构建爬虫
from my_scrapy.items import MyScrapyItem  # 导入自定义的 Item 类,用于存储爬取的数据# 定义一个爬虫类
class SpiderSpider(scrapy.Spider):# 爬虫的名称name = 'spider'# 允许爬取的域名allowed_domains = ['quotes.toscrape.com']# 页码page = 1# 链接 urlbase_url = 'https://quotes.toscrape.com/page/{}/'# 起始 urlstart_urls = [base_url.format(page)]# start_reqeusts 重写的父类方法,优先执行自己def start_requests(self):# 翻页for page in range(1, 5):# 确定 urlurl = self.base_url.format(page)# 获取数据yield scrapy.Request(url, callback=self.parse)# 解析函数,处理响应并提取数据def parse(self, response):# 使用 XPath 选取所有 class 为 quote 的 div 元素divs = response.xpath('//div[@class="quote"]')# 遍历每个 div 元素for div in divs:# 创建一个 MyScrapyItem 实例,用于存储爬取的数据item = MyScrapyItem()# 获取名言文本item['text'] = div.xpath('.//span[1]/text()').get()# 获取名人文本item['author'] = div.xpath('.//span[2]/small[1]/text()').get()# 获取标签文本item['tags'] = div.xpath('.//div[1]/a/text()').getall()# 返回 item,将其传递给引擎yield item

六、parsel 第三方库

内置了 css 选择器,xpath,re,必须通过 get、getall 获取内容。

模拟数据

import parselhtml_doc = """
<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title"><b>The Dormouse's story</b></p><p class="story">Once upon a time there were three little sisters; and their names were
<a href="http://example.com/elsie" class="sister" id="link1">Elsie</a>,
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p><p class="story">...</p>
"""# 创建对象
selector = parsel.Selector(html_doc)

1、css 选择器

# 解析数据,查找 a 标签
print(selector.css('a').get())
print(selector.css('a').getall())

2、xpath

# xpath语法
print(selector.xpath('//a[@class="sister"]/text()').get())
print(selector.xpath('//a[@class="sister"]/text()').getall())
print(selector.xpath('//a[@class="sister"]/@href').get())
print(selector.xpath('//a[@class="sister"]/@href').getall())

3、re

注意:正常解析数据是可以的,但是 sub() 这个方法在这里不能用,如需调用方法,建议使用 import re。

# re
print(selector.re('.*?<a href="(.*?)" class="sister" id="link1">(.*?)</a>'))  # 默认返回的数据类型是list

七、案例

目标网站:https://fabiaoqing.com/biaoqing/lists/page/1.html

需求:翻页爬取图片链接、图片,并以图片名字保存。

页面分析

先爬取第一页数据

确定 url:https://fabiaoqing.com/biaoqing/lists/page/1.html

先获取整个页面的 img 标签

遍历获取每一个属性值

代码实现

1、创建项目

在这里插入图片描述

2、编写代码

在 settings.py 文件中修改一些参数。

# settings.py
# 不打印日志信息
LOG_LEVEL = 'WARNING'
# Obey robots.txt rules
ROBOTSTXT_OBEY = False
# Override the default request headers:
DEFAULT_REQUEST_HEADERS = {'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8','Accept-Language': 'en','User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36'
}

修改 imgspider.py 文件中的网址,并打印网站源代码。

# imgspider.py
import scrapy  # 导入 Scrapy 库,用于构建爬虫class ImgspiderSpider(scrapy.Spider):# 爬虫的名称name = 'imgspider'# 允许爬取的域名allowed_domains = ['fabiaoqing.com']# 起始 urlstart_urls = ['https://fabiaoqing.com/biaoqing/lists/page/1.html']def parse(self, response):print(response.text)

新建一个 start.py 用来运行代码。

# start.py
# 使用 cmdline 模块来执行命令行命令
from scrapy import cmdline# 使用 Scrapy 执行名为 spider 的爬虫
cmdline.execute('scrapy crawl imgspider'.split())

确定源码拿到后,开始解析数据。

# imgspider.py
import scrapy  # 导入 Scrapy 库,用于构建爬虫
import re  # 导入 re 模块,用于进行正则表达式匹配
from Img_Download.items import ImgDownloadItem  # 导入自定义的 Item 类,用于存储爬取的数据class ImgspiderSpider(scrapy.Spider):# 爬虫的名称name = 'imgspider'# 允许爬取的域名# allowed_domains = ['fabiaoqing.com']# 起始 urlstart_urls = ['https://fabiaoqing.com/biaoqing/lists/page/1.html']def parse(self, response):# 解析数据,找所有的 img 标签images = response.xpath('//img[@class="ui image lazy"]')# 遍历获取每一个 img 标签,解析里面的图片 url 以及标题for img in images:# 图片 urlimg_url = img.xpath('@data-original').get()# 标题title = img.xpath('@title').get()# 正则表达式替换标题特殊字符title = re.sub(r'[?/\\<>*:(), ]', '', title)# 打印图片 url 和标题,验证内容是否获取到# print(img_url, title)# break# 对获取到的图片 url,再次构造请求,cb_kwargs 传递参数yield scrapy.Request(img_url, callback=self.save_img, cb_kwargs={'title': title})# 重新创建一个方法,获取图片二进制的内容def save_img(self, response, **title):# 写入到文件,保存item = ImgDownloadItem()# 图片 url,在框架获取二进制内容用.bodyitem['content'] = response.body# 标题item['title'] = title['title']yield item

在 items.py 文件里创建项目的相关数据结构。

# items.py
import scrapy # 导入Scrapy库,用于构建爬虫# 自定义的Item类,用于存储爬取的数据
class ImgDownloadItem(scrapy.Item):# define the fields for your item here like:# name = scrapy.Field()# 标题title = scrapy.Field()# 图片内容content = scrapy.Field()

在 pipelines.py 文件里保存数据。

# pipelines.py
# 自定义的管道类
class ImgDownloadPipeline:# 处理 Item 的方法,负责将数据存储到文件中def process_item(self, item, spider):# 保存数据with open(f'images/{item["title"]}.jpg', 'wb') as f:# 写入数据f.write(item['content'])# 打印信息print(f'{item["title"]}下载成功')# 返回 item,继续后续的处理过程return item

在 settings.py 文件里找到以下代码,取消注释,开启使用管道。

# settings.py
# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {'Img_Download.pipelines.ImgDownloadPipeline': 300,
}

提前在文件夹里创建 images 文件夹,运行代码,获取第一页数据。

第一页数据获取到后,进行翻页获取数据。

分析翻页 url

第一页:https://fabiaoqing.com/biaoqing/lists/page/1.html

第二页:https://fabiaoqing.com/biaoqing/lists/page/2.html

第三页:https://fabiaoqing.com/biaoqing/lists/page/3.html

翻页获取数据

# imgspider.py
import scrapy  # 导入 Scrapy 库,用于构建爬虫
import re  # 导入 re 模块,用于进行正则表达式匹配
from Img_Download.items import ImgDownloadItem  # 导入自定义的 Item 类,用于存储爬取的数据class ImgspiderSpider(scrapy.Spider):# 爬虫的名称name = 'imgspider'# 允许爬取的域名# allowed_domains = ['fabiaoqing.com']# 链接 urlbase_url = 'https://fabiaoqing.com/biaoqing/lists/page/{}.html'# 页码page = 1# 起始 urlstart_urls = [base_url.format(page)]def parse(self, response):# 解析数据,找所有的 img 标签images = response.xpath('//img[@class="ui image lazy"]')# 遍历获取每一个 img 标签,解析里面的图片 url 以及标题for img in images:# 图片 urlimg_url = img.xpath('@data-original').get()# 标题title = img.xpath('@title').get()# 正则表达式替换标题特殊字符title = re.sub(r'[?/\\<>*:(), ]', '', title)# 打印图片 url 和标题,验证内容是否获取到# print(img_url, title)# break# 对获取到的图片 url,再次构造请求,cb_kwargs 传递参数yield scrapy.Request(img_url, callback=self.save_img, cb_kwargs={'title': title})# 翻页if self.page <= 10:self.page += 1# 获取数据yield scrapy.Request(self.base_url.format(self.page), callback=self.parse)# 重新创建一个方法,获取图片二进制的内容def save_img(self, response, **title):# 写入到文件,保存item = ImgDownloadItem()# 图片 url,在框架获取二进制内容用.bodyitem['content'] = response.body# 标题item['title'] = title['title']yield item

如果爬取的速度过快,会被服务器识别是一个程序,可以设置一下爬取的速度。

在 settings.py 文件里找到以下代码,取消注释。

# settings.py
# Configure a delay for requests for the same website (default: 0)
# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
# 设置爬取时间
DOWNLOAD_DELAY = 0.5

记录学习过程,欢迎讨论交流,尊重原创,转载请注明出处~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/139134.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

BOM与DOM--记录

BOM基础&#xff08;BOM简介、常见事件、定时器、this指向&#xff09; BOM和DOM的区别和联系 JavaScript的DOM与BOM的区别与用法详解 DOM和BOM是什么&#xff1f;有什么作用&#xff1f; 图解BOM与DOM的区别与联系 BOM和DOM详解 JavaScript 中的 BOM&#xff08;浏览器对…

睿趣科技:抖音开通蓝V怎么操作的

在抖音这个充满创意和活力的社交媒体平台上&#xff0c;蓝V认证成为了许多用户的梦想之一。蓝V认证不仅是身份的象征&#xff0c;还可以增加用户的影响力和可信度。但是&#xff0c;要在抖音上获得蓝V认证并不是一件容易的事情。下面&#xff0c;我们将介绍一些操作步骤&#x…

小米笔试题——01背包问题变种

这段代码的主要思路是使用动态规划来构建一个二维数组 dp&#xff0c;其中 dp[i][j] 表示前 i 个产品是否可以组合出金额 j。通过遍历产品列表和可能的目标金额&#xff0c;不断更新 dp 数组中的值&#xff0c;最终返回 dp[N][M] 来判断是否可以组合出目标金额 M。如果 dp[N][M…

Android studio安卓生成APK文件安装包方法

1.点击Build->Generate Signed Bundle/APK 2.选择APK 3.首次生成&#xff0c;没有jks文件&#xff0c;就点击Create new。再次生成&#xff0c;直接点Next 4.选择创建jks文件路径 5.点击Next 6.选择release 7.生成完成的apk安装包路径

【论文阅读 08】Adaptive Anomaly Detection within Near-regular Milling Textures

2013年&#xff0c;太老了&#xff0c;先不看 比较老的一篇论文&#xff0c;近规则铣削纹理中的自适应异常检测 1 Abstract 在钢质量控制中的应用&#xff0c;我们提出了图像处理算法&#xff0c;用于无监督地检测隐藏在全局铣削模式内的异常。因此&#xff0c;我们考虑了基于…

uniapp小程序点击按钮直接退出小程序效果demo(整理)

点击按钮直接退出小程序 <navigator target"miniProgram" open-type"exit">退出小程序</navigator>

Android Key/Trust Store研究+ssl证书密钥

前言&#xff1a;软件搞环境涉及到了中间件thal trustzone certificate key&#xff0c;翻译过来是thal信任区域证书密钥 &#xff0c;不明白这是什么&#xff0c;学习一下 ssl证书密钥 SSL密钥是SSL加密通信中的重要组成部分。SSL证书通过加密算法生成&#xff0c;用于保护网…

Oracle 11g RAC部署笔记

搭了三次才搭好&#xff0c;要记录一下。 1. Oracle 11g RAC部署的相关步骤以及需要的包&#xff0c;可以参考这里。 Oracle 11g RAC部署_12006142的技术博客_51CTO博客Oracle 11g RAC部署&#xff0c;Oracle11gRAC部署操作环境&#xff1a;CentOS7.4Oracle11.2.0.4一、主机网…

解决老版本Oracle VirtualBox 此应用无法在此设备上运行问题

问题现象 安装华为eNSP模拟器的时候&#xff0c;对应的Oracle VirtualBox-5.2.26安装的时候提示兼容性问题&#xff0c;无法进行安装&#xff0c;具体版本信息如下&#xff1a; 软件对应版本备注Windows 11专业工作站版22H222621eNSP1.3.00.100 V100R003C00 SPC100终结正式版…

利用优化算法提高爬虫任务调度效率

目录 一、任务调度优化的重要性 二、选择合适的优化算法 三、建立任务调度模型 四、设计适应性函数 五、算法实施和调优 六、性能评估和优化结果分析 代码示例 总结 随着网络信息的爆炸式增长&#xff0c;网络爬虫在信息获取和数据挖掘等领域的应用越来越广泛。然而&am…

Arduino程序设计(十一)8×8 共阳极LED点阵显示(74HC595)

88 共阳极LED点阵显示 前言一、74HC595点阵模块1、74HC595介绍2、74HC595工作原理3、1088BS介绍4、74HC595点阵模块 二、点阵显示实验1、点阵显示初探2、点阵显示进阶3、点阵显示高阶3.1 点阵显示汉字&#xff08;方法1&#xff09;3.2 点阵显示汉字&#xff08;方法2&#xff…

conda的安装和使用

参考资料&#xff1a; https://www.bilibili.com/read/cv8956636/?spm_id_from333.999.0.0 https://www.bilibili.com/video/BV1Mv411x775/?spm_id_from333.999.0.0&vd_source98d31d5c9db8c0021988f2c2c25a9620 目录 conda是啥以及作用conda的安装conda的启动conda的配置…

2023华为杯D题——基于Kaya模型的碳排放达峰实证研究

一、前言 化石能源是推动现代经济增长的重要生产要素&#xff0c;经济生产活动与碳排放活动密切相关。充分认识经济增长与碳排放之间的关系对转变生产方式&#xff0c;确定碳达峰、碳中和路径极为必要。本研究在对经济增长与碳排放关系现有研究梳理的基础上&#xff0c;系统地分…

【二叉树魔法:链式结构与递归的纠缠】

本章重点 二叉树的链式存储二叉树链式结构的实现二叉树的遍历二叉树的节点个数以及高度二叉树的创建和销毁二叉树的优先遍历和广度优先遍历二叉树基础oj练习 1.二叉树的链式存储 二叉树的链式存储结构是指&#xff0c;用链表来表示一棵二叉树&#xff0c;即用链来指示元素的逻辑…

23. 图论 - 图的由来和构成

文章目录 图的由来图的构成Hi, 你好。我是茶桁。 从第一节课上到现在,我基本上把和人工智能相关的一些数学知识都教给大家了,终于来到我们人工智能数学的最后一个部分了,让我们从今天开始进入「图论」。 图论其实是一个比较有趣的领域,因为微积分其实更多的是对应连续型的…

iOS——KVC(键值编码)

键值编码&#xff08;KVC&#xff09; KVC&#xff08;Key Value Coding&#xff09;是一种允许以字符串形式间接操作对象属性的方式。 最基本的KVC是由NSKeyValueCoding协议提供支持&#xff0c;最基本的操作属性如下&#xff1a; setValue: 属性值 forKey: 属性名&#xff…

微信小程序之项目基本结构、页面的基础及宿主环境

文章目录 前言一、基本组成结构基本组成小程序页面的组成部分JSON配置文件作用 二、页面基础pagesWXML和HTML的区别WXSS和CSS的区别小程序中js文件分类 三、小程序宿主环境总结 前言 微信小程序的项目基本结构、页面的基础及宿主环境 一、基本组成结构 基本组成 新建一个微信…

迁移 MySQL 数据到 OceanBase 集群

使用 mysqldump 将 mysql的表结构和数据同步到 OceanBase 的MySQL 租户中 Mysql数据库导出 mysqldump -h127.0.0.1 -P3306 -uroot –p --single-transaction --hex-blob --routines --events --triggers --set-gtid-purgedOFF --databases teller >teller.sql mysql> …

网络编程day05(IO多路复用)

今日任务&#xff1a; TCP多路复用的客户端、服务端&#xff1a; 服务端代码&#xff1a; #include <stdio.h> #include <sys/types.h> #include <sys/socket.h> #include <arpa/inet.h> #include <netinet/in.h> #include <unistd.h> …

网络隔离下实现的文件传输,现有的方式真的安全吗?

在当今的信息化时代&#xff0c;网络安全已经成为了各个企业和机构不可忽视的问题。为了保护内部数据和系统不受外部网络的攻击和泄露&#xff0c;一些涉及国家安全、商业机密、个人隐私等敏感信息的企业和机构&#xff0c;通常会对内外网进行隔离&#xff0c;即建立一个独立的…