【深度学习实验】线性模型(一):使用NumPy实现简单线性模型:搭建、构造损失函数、计算损失值

#【中秋征文】程序人生,中秋共享#

目录

一、实验介绍

 二、实验环境

1. 配置虚拟环境

2. 库版本介绍

三、实验内容

0. 导入库

1. 定义线性模型linear_model

2. 定义损失函数loss_function

3. 定义数据

4. 调用函数


一、实验介绍

  • 使用Numpy实现
    • 线性模型搭建
    • 构造损失函数
    • 计算损失值

 二、实验环境

        本系列实验使用了PyTorch深度学习框架,相关操作如下:

1. 配置虚拟环境

conda create -n DL python=3.7 
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
 conda install scikit-learn

2. 库版本介绍

软件包本实验版本目前最新版
matplotlib3.5.33.8.0
numpy1.21.61.26.0
python3.7.16
scikit-learn0.22.11.3.0
torch1.8.1+cu1022.0.1
torchaudio0.8.12.0.2
torchvision0.9.1+cu1020.15.2

三、实验内容

ChatGPT:

        线性模型是一种基本的机器学习模型,用于建立输入特征与输出之间的线性关系。它是一种线性组合模型,通过对输入特征进行加权求和,再加上一个偏置项,来预测输出值。

        线性模型的一般形式可以表示为:y = w1x1 + w2x2 + ... + wnxn + b,其中y是输出变量,x1, x2, ..., xn是输入特征,w1, w2, ..., wn是特征的权重,b是偏置项。模型的目标是通过调整权重和偏置项,使预测值与真实值之间的差异最小化。

线性模型有几种常见的应用形式:

  1. 线性回归(Linear Regression):用于建立输入特征与连续输出之间的线性关系。它通过最小化预测值与真实值的平方差来拟合最佳的回归直线。

  2. 逻辑回归(Logistic Regression):用于建立输入特征与二分类或多分类输出之间的线性关系。它通过使用逻辑函数(如sigmoid函数)将线性组合的结果映射到概率值,从而进行分类预测。

  3. 支持向量机(Support Vector Machines,SVM):用于二分类和多分类问题。SVM通过找到一个最优的超平面,将不同类别的样本分隔开。它可以使用不同的核函数来处理非线性问题。

  4. 岭回归(Ridge Regression)和Lasso回归(Lasso Regression):用于处理具有多重共线性(multicollinearity)的回归问题。它们通过对权重引入正则化项,可以减小特征的影响,提高模型的泛化能力。

        线性模型的优点包括简单、易于解释和计算效率高。它们在许多实际问题中都有广泛的应用。然而,线性模型也有一些限制,例如对非线性关系的建模能力较弱。在处理复杂的问题时,可以通过引入非线性特征转换或使用核函数进行扩展,以提高线性模型的性能。

本系列为实验内容,对理论知识不进行详细阐释

(咳咳,其实是没时间整理,待有缘之时,回来填坑)

0. 导入库

首先,导入了numpy库,用于进行数值计算。

import numpy as np

1. 定义线性模型linear_model

        该函数接受输入数据x,使用随机生成的权重w和偏置b,计算输出值output。这里的线性模型的形式为 output = x * w + b

def linear_model(x):w = np.random.randn(1)b = np.random.randn(1)output = np.dot(x, w) + breturn output

2. 定义损失函数loss_function

        该函数接受目标值y和模型预测值prediction,计算均方误差损失。均方误差损失的计算公式为 (prediction - y) * (prediction - y)

def loss_function(y, prediction):loss = (prediction - y) * (prediction - y)return loss

3. 定义数据

  • 生成了一个形状为(5, 1)的随机输入数据x,每个元素都是在0到1之间的随机数。
  • 生成了一个形状为(5,)的目标值y,包含了5个标签(1或-1),用于模型训练和损失计算。
  • 打印了数据的信息,包括每个样本的输入值x和目标值y
x = np.random.rand(5, 1)
y = np.array([1, -1, 1, -1, 1]).astype('float')
print("The data is as follows:")
for i in range(x.shape[0]):print("Item " + str(i), "x:", x[i][0], "y:", y[i])

4. 调用函数

  • 调用linear_model函数,传入输入数据x,得到模型的预测值prediction
  • 调用loss_function函数,传入目标值y和预测值prediction,得到损失值loss
  • 打印了每个样本的损失值。
prediction = linear_model(x)
loss = loss_function(y, prediction)
print("The all loss value is:")
for i in range(len(loss)):print("Item ", str(i), "Loss:", loss[i])


注意:

        本实验的线性模型仅简单地使用随机权重和偏置,计算了模型在训练集上的均方误差损失,没有使用优化算法进行模型参数的更新。

        通常情况下会使用梯度下降等优化算法来最小化损失函数,并根据训练数据不断更新模型的参数,具体内容请听下回分解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/140433.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

clickhouse简单安装部署

目录 前言(来源于官方文档): 一.下载并上传 1.下载地址:点我跳转下载 2.上传至Linux 二.解压和配置 1.解压顺序 注意:必须按照以下顺序解压,并且每解压一个都要执行该解压后文件的install/doinst.sh文件 解压步骤&#xff…

如何安全传输存储用户密码?(程序员必备)

前言 我们开发网站或者APP的时候,首先要解决的问题,就是「如何安全传输和存储用户的密码」。一些大公司的用户数据库泄露事件也时有发生,带来非常大的负面影响。因此,如何安全传输存储用户密码,是每位程序员必备的基础…

寻找单身狗

在一个数组中仅出现一次,其他数均出现两次,这个出现一次的数就被称为“单身狗“。 一.一个单身狗 我们知道异或运算操作符 ^ ,它的特点是对应二进制位相同为 0,相异为 1。 由此我们容易知道两个相同的数,进行异或运算得到的结果…

提示计算机丢失msvcp140.dll怎么办,缺少msvcp140.dll一键修复

在计算机使用过程中,我们可能会遇到各种稀奇古怪的问题。其中,msvcp140.dll 文件丢失算是比较常见的一种。那么,究竟什么是 msvcp140.dll 文件?它为什么会丢失?我们又该如何解决这个问题呢?本文将围绕这些问…

高性能计算环境下的深度学习异构集群建设与优化实践

★深度学习;模式识别;图像处理;人工智能建模;人工智能;深度学习算法;强化学习;神经网络;卷积神经网络;人工神经网络;VIBE算法;控制系统仿真&#…

1 MySQL 高级(进阶) SQL 语句(一)

目录 1 MySQL SQL 语句 1.1SELECT 1.2 DISTINCT 1.3 WHERE 1.4 AND OR 1.5 in 1.6 BETWEEN 2 通配符 ----通常通配符都是跟 LIKE 一起使用的 2.1 LIKE 2.2 ORDER BY 3函数 3.1数学函数 3.2 聚合函数 3.3 字符串函数 4 GROUP BY 4.1 HAVING 5 别名 6 子查询 …

NSS [HXPCTF 2021]includer‘s revenge

NSS [HXPCTF 2021]includer’s revenge 题目描述&#xff1a;Just sitting here and waiting for PHP 8.1 (lolphp). 题目源码&#xff1a;&#xff08;index.php&#xff09; <?php ($_GET[action] ?? read ) read ? readfile($_GET[file] ?? index.php) : inclu…

数字孪生在灌区信息中的应用

灌区信息是智慧水利的组成部分&#xff0c;对灌区现代化改造的支撑作用和地位尤为重要&#xff0c;对促进水利可持续发展有重要意义。灌区信息化系统主要对对灌区的水情、雨情、土壤墒情、气象等信息进行监测&#xff0c;对重点区域进行视频监控&#xff0c;同时对泵站、闸门进…

服务器搭建(TCP套接字)-fork版(服务端)

基础版的服务端虽然基本实现了服务器的基本功能&#xff0c;但是如果客户端的并发量比较大的话&#xff0c;服务端的压力和性能就会大打折扣,为了提升服务端的并发性能&#xff0c;可以通过fork子进程的方式&#xff0c;为每一个连接成功的客户端fork一个子进程&#xff0c;这样…

C#的属性讲解

文章目录 属性自动实现属性访问器内写逻辑属性不存储值其他文章 属性 在C#中&#xff0c;属性是一种特殊的成员&#xff0c;用于封装类的字段。它们提供了一种简洁和安全的方式来访问和设置类的状态和行为。 属性由两个访问器组成&#xff1a;get&#xff08;获取器&#xff…

【Java核心】JDK、JRE、 JVM的联系与区别

个人简介&#xff1a;Java领域新星创作者&#xff1b;阿里云技术博主、星级博主、专家博主&#xff1b;正在Java学习的路上摸爬滚打&#xff0c;记录学习的过程~ 个人主页&#xff1a;.29.的博客 学习社区&#xff1a;进去逛一逛~ JDK、JRE、 JVM的联系与区别 1. 简述2. 是什么…

分类预测 | Matlab实现NGO-CNN-SVM北方苍鹰算法优化卷积支持向量机分类预测

分类预测 | Matlab实现NGO-CNN-SVM北方苍鹰算法优化卷积支持向量机分类预测 目录 分类预测 | Matlab实现NGO-CNN-SVM北方苍鹰算法优化卷积支持向量机分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现NGO-CNN-SVM北方苍鹰算法优化卷积支持向量机分类预…

MySQL查询(基础到高级)

目录 一、单表查询&#xff1a; 1.基本查询&#xff1a; 1.1 查询多个字段&#xff1a; 1.2 去除重复记录&#xff1a; 2. 条件查询&#xff1a; 2.1 语法 2.2 条件分类&#xff1a; 比较运算符&#xff1a; between..and..使用示例&#xff1a; ​编辑 in(..) 使用示例&…

webpack:详解代码分离以及插件SplitChunksPlugin的使用

文章目录 背景入口起点分离基本使用防重复 SplitChunksPlugin插件分离背景基本使用splitChunks.chunkssplitChunks.minChunkssplitChunks.minSizesplitChunks.maxSizesplitChunks.namesplitChunks.cacheGroupssplitChunks.cacheGroups.{cacheGroup}.prioritysplitChunks.cacheG…

【力扣每日一题】2023.9.24 LRU缓存

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 这又是一道程序设计类的题目&#xff0c;要我们实现LRU缓存的get和put操作。 简单说一下LRU缓存是什么&#xff0c;在我看来就是实用主义…

Nginx环境搭建、负载均衡测试

Nginx环境搭建、负载均衡测试 系统环境&#xff1a; win10&#xff0c;IDEA2020&#xff0c;JDK8 一、nginx环境搭建 1.ngxin下载 Nginx官网下载&#xff1a; http://nginx.org/en/download.html Nginx有三种版本&#xff0c;分别是Mainline version&#xff08;开发版&…

智慧公厕,公共厕所数字化促进智慧城市管理的成效

随着科技的不断进步和城市化的快速发展&#xff0c;城市管理也面临着新的挑战和机遇。而智慧公厕作为基层配套设施&#xff0c;通过数字化提升城市管理的效能&#xff0c;成为了现代智慧城市建设的重要一环。本文以智慧公厕领先厂家广州中期科技有限公司&#xff0c;大量项目案…

安装Linux虚拟机——以ubuntukylin-16.04.7-desktop-amd64.iso为例

正文 安装VMware 重要提示 安装软件之前&#xff0c;请先退出360、电脑管家等安全类软件&#xff0c;这类软件会阻止我们安装的软件进行注册表注册&#xff0c;很可能导致安装失败。确认物理机&#xff08;也就是你自己使用的电脑&#xff09;的防火墙已经关闭。 下载 打开…

深入学习 Redis - 分布式锁底层实现原理,以及实际应用

目录 一、Redis 分布式锁 1.1、什么是分布式锁 1.2、分布式锁的基础实现 1.2.1、引入场景 1.2.2、基础实现思想 1.2.3、引入 setnx 1.3、引入过期时间 1.4、引入校验 id 1.5、引入 lua 脚本 1.5.1、引入 lua 脚本的原因 1.5.2、lua 脚本介绍 1.6、过期时间续约问题&…

Linux系统上使用SQLite

1. 安装SQLite 在Linux上安装SQLite非常简单。可以使用包管理器&#xff08;如apt、yum&#xff09;直接从官方软件源安装SQLite。例如&#xff0c;在Ubuntu上使用以下命令安装SQLite&#xff1a; sudo apt-get install sqlite32. 打开或创建数据库 要打开或创建一个SQLite数…