深入学习 Redis - 分布式锁底层实现原理,以及实际应用

目录

一、Redis 分布式锁

1.1、什么是分布式锁

1.2、分布式锁的基础实现

1.2.1、引入场景

1.2.2、基础实现思想

1.2.3、引入 setnx

1.3、引入过期时间

1.4、引入校验 id

1.5、引入 lua 脚本

1.5.1、引入 lua 脚本的原因

1.5.2、lua 脚本介绍

1.6、过期时间续约问题(看门狗 Watch Dog)

1.7、引入 redlock 算法

1.8、分布式锁扩展


一、Redis 分布式锁


1.1、什么是分布式锁

锁就是用来解决线程安全的,分布式锁又是什么呢?

之前所学过的 synchronized 本质上都是只能在一个进程内部生效的,而在分布式系统中,是有很多进程的(每个服务器都是一个独立的进程),多个进程之间的执行顺序也是不确定的(随机的 ),之前的锁,就很应对分布式系统中多个进程之间产生的制约.

因此,就需要引入 “分布式锁” 来解决上述问题.

分布式锁本质上就是一个公共的服务器,用来记录锁的状态。

Ps:这个公共的服务器可以是Redis, 也可以是其他组件(比如 MySQL 或者 ZooKeeper 等), 还可以是我们自己写的⼀个服务

1.2、分布式锁的基础实现

1.2.1、引入场景

想象这样一个场景:买车票.

实现思路:先查询剩余票数,如果剩余票数 > 0,则设置剩余票数 -= 1.

在没有引入分布式锁之前,就有可能出现以下买票场景:

客户端1 先执行查询余票,发现剩余 1 张,在即将执行 剩余票数 -= 1 过程之前,客户端2 也执行了查询余票,发现也是剩余 1 张,客户端2  也会执行 剩余票数 -= 1. 的过程.

这里就出现了 “超卖” 的场景!!!1 张票,卖给了两个人.

1.2.2、基础实现思想

分布式锁的实现思路很简单,本质上是使用一个/一组 单独的服务器程序,通过用一个键值对来标识锁的状态,来给其他服务器提供 “加锁” 这样的服务.

对于上述场景,进行买票操作过程中,就需要先加锁.

具体的,往 redis 上设置一个特殊的 key - value,接着完成买票操作,再把这个 key - value 删除掉.  如果在 客户端1 买票的期间,客户端2 也想去买票,就也会尝试设置 key - value,如果发现  key - value 已经存在,就分为 “加锁失败”(是放弃还是阻塞,就要看具体的实现策略了).

这样就保证了 第一个服务器执行 “查询 -> 更新” 过程中,第二个服务器不会执行 “查询” ,也就解决了上述 “超卖” 问题.

Ps:买票的场景使用 mysql 的事务,也可以批量执行 查询 + 修改 操作. 但是分布式系统中,要访问的共享资源不一定是 mysql ....... 也可能是其他存储介质,没有事务. 也可能是执行一段特定的操作,是通过统一的服务器完成指定动作.

1.2.3、引入 setnx

针对于刚刚买票的场景:“key 不存在就设置成功,不存在就设置失败”. 使用 setnx 就可以达到 “加锁” 的效果. 针对解锁,就可以使用 del 命令来完成.

如果某个服务器,加锁成功了(setnx 成功),执行后续逻辑中,还没来得及执行 “解锁” 程序就崩溃了,怎么办?

以前在一个进程中,为了保证解锁的操作能执行到,可以把解锁的操作放到 finally 中,但是这种做法,只是针对进程内的锁有效,针对分布式锁,无效!

比如,服务器直接掉电,进程直接异常终止,这就会导致 redis 上设置的 key 无人删除,也就导致其他服务器无法获取到锁了.

1.3、引入过期时间

针对上述 “没来得及解锁,服务器宕机的情况”,我们可以给 key 设置一个过期时间.

通过 set ex nx 这样的命令完成设置,一旦时间到了,key 就会自动被删除掉.

比如,设置 key 的过期时间,为 1000ms,那么即使出现极端情况,某个服务器挂了,没有真正释放锁,这个锁最多保持 1000ms,也就自动释放了.

 可以通过先 setnx ,再使用 expire 的方式设置过期时间么?

不可以!!!务必要使用 set ex nx 的方式来设置!

redis 上多个命令之间,无法保证原子性,即使使用 事务,也不能保证这两个操作都能成功(redis 的事务只能保证不被 “插队”,不能保证操作成功). 此时就有可能出现 setnx 成功,expire 失败的场景.

1.4、引入校验 id

所谓锁,就是 redis 上的普通键值对.

所谓加锁,就是给 redis 上设置一个 key - value.

所谓解锁,就是把 redis 上这个 key - value 删除掉.

是否可能出现 服务器1  执行了加锁,服务器2 执行了解锁?

正常来说,肯定不是故意的,但是代码总会有 bug,不小心执行了解锁操作,就让这锁形同虚设,带来严重后果(比如 超卖).

为了解决上述问题,就需要引入一点校验机制.

具体的,如下步骤:

1. 给服务器编号,让每个服务器都有一个自己的身份标识.

2. 进行加锁的时候,设置 key - value, key 就表示要针对哪个资源加锁,value 就表示服务器的编号.

后续在解锁的时候,就可以进行校验了.  解锁的时候,先查询一下这个锁对应的服务器编号,然后判定这个编号是否就是当前执行解锁的服务器编号,如果是,才真正执行 del,如果不是,就失效.

通过上述操作,就可以有效避免 “误解锁”.

1.5、引入 lua 脚本

1.5.1、引入 lua 脚本的原因

一个服务器内部,也可能是多线程的. 此时,就可能两个线程都在执行 “解锁” 操作.

例如如下场景: 

首先我们知道,解锁的操作分为两步,先通过 GET 服务器编号进行校验,校验成功后在进行 DEL.

在 服务器1 中,线程A 执行 GET 后 线程 B 也执行 GET,然后 线程A 执行 DEL 解锁,此时 线程 B 也执行 DEL 解锁.

上述情况,看起来好像重复执行 DEL 好像问题不大?实则不然!

如果此时还有一个服务器,执行加锁,就可能出问题了.

在 线程A 执行完 DEL 之后,线程 B 执行 DEL 之前,服务器2 的 线程C 正好要执行 加锁(set ex nx),此时,由于 A 已经解锁了,C 的加锁能成功,但是紧接着,线程 B DEL 就来了,就把 服务器2 刚刚的加锁操作给解除了.

归根结底,还是因为 get 和 del 不是一条原子操作产生的问题.

使用事务,虽然可以解决上述问题(redis 事务虽然弱,但是能够避免插队),但是实践中,往往使用更好的方案 —— lua 脚本.

1.5.2、lua 脚本介绍

lua 语言特别轻量(实现一个 lua 解释器,消耗的体积非常小),可以使用 lua 编写一些逻辑,把这个脚本上传到 redis 服务器上,然后就可以让客户端来控制 redis 执行上述脚本了.

最重要的一点就是,redis 执行一个 lua 脚本,就相当于在 redis 上执行一个命令一样,是原子的. 并且 redis 官方文档中也明确说,lua 就属于是 事务 的替代方案.

例如前面的 “买票” 案例.

if redis.call('get',KEYS[1]) == ARGV[1] then return redis.call('del',KEYS[1]) 
else return 0 
end;

ARGV[1]:表示调用脚本给定的参数,此处要传入一个服务器的 id.

如果 id 和 get 到参数匹配,就进行删除操作.

1.6、过期时间续约问题(看门狗 Watch Dog)

加锁的时候,给 key 设定 过期时间,设置成多少合适?

  • 如果设置的时间过短,就可能在 业务逻辑 还没有执行完,就释放锁了.
  • 如果设置的时间太长,就可能导致 “锁释放的不及时” 的问题.

最好的方式就是 “动态续约”.

具体的,初始情况下,设置一个过期时间(比如 1s),在还剩 300ms 的时候(这里的时间不一定是 300ms,数据灵活调整),如果当前任务还没有执行完,就把过期时间续上 1s,等到时间快到了,任务还没执行完,就再续(无限续杯)~

上述过程中,如何知道当前任务还没有执行完,要进行续杯呢?实际上,服务器这边有一个专门的线程,负责续约这个事情,这个线程也叫做 “看门狗”(这是一个比较广义的概念,很多涉及到过期时间的操作都会引入 “看门狗” ).

这样,即使服务器中途崩溃了,没人负责续约了,锁也能在短时间内自动释放.

这就好比,吃自助餐,老板都是鼓励大家,每次少拿点,少量多次~  怕的就是你一次拿太多,吃不完,大部分都剩下了. 如果每次少拿点,即使吃不下了,浪费的也不多了.

1.7、引入 redlock 算法

使用 redis 作为分布式锁,redis 本身有没有可能挂了呢?

是很有可能的!

实际工作中的 redis 都是以集群的方式部署的(至少是主从,不会是单机),那么就有可能出现以下大冤种的情况:

服务器1 向 master 节点进行加锁操作. 这个写⼊ key 的过程刚刚完成, master 挂了; slave 节点升级成了新的 master 节点. 但是由于刚才写⼊的这个 key 尚未来得及同步给 slave(主节点和从节点之间的数据同步,是存在延迟的), 此时 就相当于服务器1 的加锁操作形同虚设了, 服务器2 仍然可以进行加锁.

为了解决以上问题,就提出了 redlock 算法(redis 作者给出的方案)

  1. 此处加锁,就是按照一定的顺序,针对这组 redis 都进行加锁操作. 
  2. 如果某个节点加不上锁,没关系,可能是 redis 挂了,继续给下一个节点加锁即可.
  3. 如果写入 key 成功的节点个数超过总数的一半,就视为 加锁成功.
  4. 同理,进行解锁的时候,也会把上述节点都解锁一遍.

1.8、分布式锁扩展

上面介绍的只是简单的 “互斥锁”.

锁这里还涉及到一些其他情况:

1.  读写锁.

2.  公平锁.

3.  可重入锁

........

基于 redis 也可以实现上述锁的特性,这里大家下来可以自己尝试实现以下~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/140409.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux系统上使用SQLite

1. 安装SQLite 在Linux上安装SQLite非常简单。可以使用包管理器(如apt、yum)直接从官方软件源安装SQLite。例如,在Ubuntu上使用以下命令安装SQLite: sudo apt-get install sqlite32. 打开或创建数据库 要打开或创建一个SQLite数…

2023华为杯数学建模D题第三问-碳排放路径优化(能源消费结构调整的多目标优化模型构建详细过程+模型假设(可复制))

1.碳排放约束下(人为干预按时碳达峰与碳中和的基准情景)能源消费结构多目标优化模型构建 1.1基本假设 本文的模型设计主要基于以下几个基本假设: (1)能源消费结构调整的根本驱动要素,是对投资耗费的最小化…

基于JAVA+SpringBoot+Vue+协同过滤算法+爬虫的前后端分离的租房系统

✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取项目下载方式🍅 一、项目背景介绍: 随着城市化进程的加快…

代码随想录|647. 回文子串,516.最长回文子序列

647. 回文子串 1.dp含义 dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是,则dp[i][j]为true,否则为false。 2.dp递推公式 整体上是两种,就是s[i]与s[j]相等,s[i]与…

AI AIgents时代 - (四.) HuggingGPT MetaGPT

🟢 HuggingGPT HuggingGPT是一个多模型调用的 Agent 框架,利用 ChatGPT 作为任务规划器,根据每个模型的描述来选择 HuggingFace 平台上可用的模型,最后根据模型的执行结果生成总结性的响应。 这个项目目前已在 Github 上开源&am…

Mybatis学习笔记7 参数处理专题

Mybatis学习笔记6 使用时的一些小技巧_biubiubiu0706的博客-CSDN博客 1.单个简单类型参数 2.Map参数 3.实体类参数 4.多参数 5.Param注解(命名参数) 6.Param源码分析 建表 插入点数据 新建模块 pom.xml <?xml version"1.0" encoding"UTF-8"?&…

数据结构(java)--队列1

一、我们还是依旧引入一个小例子&#xff08;银行排队&#xff09;&#xff1a; 需要取号排队&#xff0c;服务完下一个 二、队列介绍 1&#xff09;队列是一个有序列表&#xff0c;可以用数组或是链表来实现 2&#xff09;遵循先入先出的原则。即&#xff1a;先存入队列的数…

肖sir__项目实战讲解__004

项目实战讲解 一、项目的类型 金融类&#xff1a; 保险(健康险理财险)、证券、基金(股票型基金、混合型基金、指数型基金、债券型基金、 天天基金网&#xff08;ETF基金、货币型基金、量化基金)、银行、贷款、信用卡、外汇、二元期权、期货原油、blockchain、 数字货币、黄金白…

机器学习之正则化与验证提高模型泛化

文章目录 正则化&#xff08;Regularization&#xff09;&#xff1a;验证&#xff08;Validation&#xff09;&#xff1a; 正则化和验证是机器学习中重要的概念&#xff0c;它们帮助提高模型的性能和泛化能力。让我详细介绍一下这两个概念&#xff1a; 正则化&#xff08;Re…

三维重建_纹理重建与表面细化

目录 前言&#xff1a;为什么要重建纹理&#xff1f; 1. 纹理图像的自动创建 1.1 基础知识 1.2 算法流程 1.2.1 视角选择 1.2.2 纹理坐标的计算 1.2.3 全局颜色调整 1.2.4 泊松图像编辑 1.2.5 OBJ文件 1.3 结果示例 2. 网格细化优化 2.1 基础知识与数学模型 2.2 优…

TLS/SSL(十) session缓存、ticket 票据、TLS 1.3的0-RTT

一 TLS优化手段 TLS 为了提升握手速度而提出优化手段,主要是减少TLS握手中RTT消耗的时间关于session cache和session ticket,nginx关于ssl握手的地方都有影子 [指令] https面经 ① session 缓存 resume: 重用,复用 案例&#xff1a; 第二次访问www.baidu.com 说明&#x…

解决域控制器的传感器配置问题

gpu加速计划 下载东西有时会报没有apt-utils&#xff0c;所以最好先给它下了&#xff1a; sudo apt-get install apt-utils验证&#xff1a; python #输入库 import torch #查看版本 print(torch.__version__) #查看gpu是否可用 torch.cuda.is_available() #返回设备gpu个数…

解决typescript报错=》不能将类型“undefined”分配给类型“boolean”

报错如下&#xff1a; 然后看看isSearch的类型定义&#xff1a; isSearch的定义是可选属性&#xff0c;但是TypeScript 中将一个参数标记为可选时&#xff0c;它的默认值将是 undefined。可选参数表示你可以选择性地提供该参数&#xff0c;如果不提供&#xff0c;那么它将默认为…

八一书《乡村振兴战略下传统村落文化旅游设计》许少辉瑞博士生辉少许——2023学生开学季许多少年辉光三农

八一书《乡村振兴战略下传统村落文化旅游设计》许少辉瑞博士生辉少许——2023学生开学季许多少年辉光三农

阿里云服务器+Frp+Proxifier工具进行内网穿透

阿里云服务器FrpProxifier工具进行内网穿透 为什么进行内网穿透&#xff1f; 什么叫内网穿透&#xff1f; 首先我们对内网和外网这两个名词做个解释&#xff1a; 内网&#xff1a;是内部建立的局域网络或办公网络,例如家庭内部网络&#xff0c;公司内部网络&#xff1b; 外…

【力扣485】最大连续 1 的个数

&#x1f451;专栏内容&#xff1a;力扣刷题⛪个人主页&#xff1a;子夜的星的主页&#x1f495;座右铭&#xff1a;前路未远&#xff0c;步履不停 目录 一、题目描述二、题目分析1、最值模拟2、双指针 一、题目描述 题目链接&#xff1a;最大连续 1 的个数 给定一个二进制数…

Linux---su:鉴定故障

问题来源:在使用xshell操作Linux命令时,切换root权限报错 可能是未设置密码:输入 sudo password 重新设置一下密码即可 本人犯的错: 因为在Linux下输入密码是没有显示的,然后我的键盘num键没开!!!(也就是输入数字开关的键盘),导致我认为我的密码输进去了,给我整懵逼了&#x…

树结构数据在table中回显 treeselect disabled

<el-table-column label"产业认定" align"center" prop"industryIdentification"><template slot-scope"scope"><treeselectv-if"scope.row.industryIdentification"v-model"scope.row.industryIdentif…

ESP8266使用记录(一)

1、23.7.17从TB买了个8266 2、下载安装Arduino 3、卖家的配套资料&#xff0c;直接覆盖相关文件 4、文件-首选项-设置-编辑器语言-中文(简体) 其他开发板管理器地址 http://arduino.esp8266.com/stable/package_esp8266com_index.json 5、工具-端口-COM6 工具-开发板-esp8266…

C# EPPlus 访问 Excel表格

EPPlus是什么&#xff1f; 一个访问Excel表格的库&#xff0c;调用相当简单 怎么访问&#xff1f; 表格可以简单理解成一个二维数组我希望访问表格像二维数组一样简单我希望消耗不算太大 封装一个类 下载DLL以及这个文件&#xff1a;《下载传送门->》 注意需要导入EP…